

E-Learning Series: Getting Started with Windows and Mac Development

Page 2

Lesson 8 – Using Image and Animation Effects
Version: 0.9

Presented: June 21, 2012

Last Updated: June 25, 2012

Prepared by: David Intersimone “David I”, Embarcadero Technologies

© Copyright 2012 Embarcadero Technologies, Inc. All Rights Reserved.

davidi@embarc adero.com

http://blogs.embarc adero.com/davidi/

Contents

Lesson 8 – Using Image and Animation Effects ... 2

Introduction... 3

Pixel Shader – Cg and HLSL ... 4

FireMonkey Business Application Platform (FMX) .. 6

Image Effects ... 9

TEffect, TImageFXEffect, TFilter and TShaderFilter ... 10

Types of Image Effects ... 11

Effects That Modify Pixels Individually .. 11

Effects that Consider a Pixel’s Neighbors .. 12

Additive Effects .. 13

Effects that Modify the Image as a Whole .. 14

Transition Effects ... 15

Setting Effect Triggers .. 18

Using Image Effects.. 19

Step 1: Apply an Effect to a Picture... 19

Step 2: Using a Trigger to Enable an Effect. ... 23

The Shader Filter Sample Project.. 23

Animations .. 24

Types of Animations .. 25

Creating Animations .. 26

AnimationType and Interpolation Properties ... 26

Starting and Stopping Animations .. 28

mailto:davidi@embarcadero.com
http://blogs.embarcadero.com/davidi/

E-Learning Series: Getting Started with Windows and Mac Development

Page 3

Animation Triggers... 28

Inverting and Looping Animations.. 29

Controlling Animations using Code... 29

AnimateFloat ... 31

AnimateColor ... 33

Custom Animations.. 34

Using Animations ... 34

Step 1: Using TFloatAnimation to Change a Floating Property Value ... 34

Step 2: Changing the Color by Adding TColorAnimation.. 37

Step 3: Changing an Image by Using TBitmapAnimation ... 39

Additional Animation Examples for Delphi and C++ .. 40

AnimationDemo HD and 3D Samples ... 41

Image Effects and Animations for iOS ... 41

Summary, Looking Forward, To Do Items, Resources, Q&A and the Quiz .. 42

To Do Items ... 42

Links to Additional Resources... 42

Delphi: ... 43

C++: ... 43

Pixel Shader: .. 43

Q&A:.. 43

Self Check Quiz .. 44

Answers to the Self Check Quiz: ... 44

Introduction

FireMonkey includes more than 60 image and animation effects that you can use in your Windows, mac

and iOS applications. The Fire Monkey built-in ImageFX engine provides easy-to-use, shader-powered,

GPU image processing without the need for complex programming.

The ImageFX engine can be used for 2D image transformations, real-time effects, UI effects, and more.

Like Adobe’s Photoshop and CoreImage, ImageFX supports multiple filters simultaneously leveraging a

single dynamic GPU instruction pipeline for near real-time pixel-perfect performance.

E-Learning Series: Getting Started with Windows and Mac Development

Page 4

All of FireMonkey’s HD and 3D objects can be animated using timeline -based animations to create

motion, transitions and effects. You can hook up animations to user controls and input methods such as

mouse, touch and motion controllers for highly interactive applications, kiosks, and demonstrations.

Using FireMonkey image and animation effects requires that your computer has a Graphics Processing

Unit (GPU). The GPU must support Pixel Shader 2.0, part of DirectX 9.0, which first appeared from

various vendors in these products:

 ATI (now AMD) Radeon 9500-X600 series, introduced in 2002.

 NVIDIA GeForce FX (or GeForce 5) series, introduced in 2003.

 Intel GMA 900, introduced in 2004.

When run in a virtual machine, the host's GPU must be accessible. Such support is found in the following

virtualization products:

 VMware Workstation version 7 or higher

 VMware Player version 3 or higher

 VMware Fusion for the Mac version 3 or higher

In lesson 8 you’ll learn how to enhance your Windows, Mac and i OS HD and 3D user interfaces using

FireMonkey’s image and animation effects .

Pixel Shader – Cg and HLSL

E-Learning Series: Getting Started with Windows and Mac Development

Page 5

The Pixel Shader Language specification (NVidia calls their language Cg – C for Graphics, Microsoft calls

there HLSL – High Level Shader Language) started as a joint collaboration project between NVidia and

Microsoft.

 NVidia - http://en.wikipedia.org/wiki/Cg_(programming_language)

 Microsoft - http://en.wikipedia.org/wiki/High_Level_Shader_Language

Most of FireMonkey’s image effects use implementations of the Pixel Shader language for Microsoft

DirectX and OpenGL. What does Shader Language look like? Take a look at the implementation section

of any of the Filter source code files included in RAD Studio. Looking at FMX.FilterCatBlur.pas, which

contains the declarations and implementations for the Blur , Gaussian Blur, Directional Blur and Zoom

Blur, you’ll see implementation code that looks like the following:

constructor TGaussianBlurFilter.Create;
const

DX: array [0..1611] of byte = (
 $00, $02, $FF, $FF, $FE, $FF, $2B, $00, $43, $54,
 $41, $42, $1C, $00, $00, $00, $83, $00, $00, $00,
 $00, $02, $FF, $FF, $02, $00, $00, $00, $1C, $00,
 $00, $00, $00, $01, $00, $20, $7C, $00, $00, $00,
 $44, $00, $00, $00, $02, $00, $00, $00, $01, $00,
 $02, $00, $4C, $00, $00, $00, $00, $00, $00, $00,
…);

GLSL: PAnsiChar =
 'vec4 _TMP1;'+
 'vec2 _TMP2;'+
 'vec2 _TMP6;'+
 'varying vec4 TEX0;'+
 'uniform sampler2D texture0;'+
 'uniform vec4 PSParam0;'+
 'void main()'+
 '{'+
 ' vec4 _Color;'+
 ' vec2 _newCoord;'+
 ' _newCoord = TEX0.xy;'+
 ' _newCoord.x = TEX0.x + -
 8.00000000E+000/PSParam0.x;'+
 ' _TMP2 = min(vec2(1.00000000E+000, 1.00000000E+000),
 _newCoord);'+
 ' _TMP6 = max(vec2(0.00000000E+000, 0.00000000E+000),
 _TMP2);'+
…);

The hexadecimal bytes are the compi led shader language for DirectX on Windows (Microsoft doesn’t

allow us to ship their HLSL compiler so we have to pre -compile the code). When you use a FireMonkey

image effect, the Shader Language code is added to your application executable and sent to t he GPU

along with the address of the image to be processed.

http://en.wikipedia.org/wiki/Cg_(programming_language)
http://en.wikipedia.org/wiki/High_Level_Shader_Language

E-Learning Series: Getting Started with Windows and Mac Development

Page 6

To learn more about FireMonkey’s support for Pixel Shader language, check out André Miertschink’s

Australian Delphi User Group article “How to Create Your Own FireMonkey Effect” at

http://members.adug.org.au/2011/12/15/how-to-create-your-own-firemonkeyimage-filtereffect-to-

use-with-firemonkey/.

FireMonkey Business Application Platform (FMX)

FMX is the unit scope that contains the units and unit scopes of the Fire Monkey application platform.

FireMonkey leverages the graphics processing unit (GPU) in modern desktop and mobile devices to

create visually engaging applications on multiple platforms, targeting the entire range from the personal

to the enterprise. Major features of Fire Monkey include:

 Cross-platform abstraction layer for OS features like windows, menus, timers, and dialogs

 2D and 3D graphics

 Powerful vector engine (like Adobe Flash or Microsoft WPF)

 Fast real-time anti-aliased vector graphics; resolution independent, with alpha blending and

gradients

 WYSIWYG designer and property editors

 Advanced GUI engine - window, button, textbox, numberbox, memo, anglebox, list box, and

more

 Advanced skinning engine based on vector graphics styles with sample style themes

 Shape primitives for 2D graphics along with a built-in set of brushes, pens, geometries, and

transforms

 Advanced ani mations c alculated in background thread; e asy to u se and accurate, with
minimal CPU usage and automatic frame rate correction

 Bitmap effects rendered by the GPU, including blurring, color filtering, shadows and

transitions

 Flexible layouts and compositing of shapes and other controls

 Layered forms, Unicode-enabled

 JPEG, PNG, TIFF, and GIF format read/write support

 Multi-language engine, editor and examples

The following figure shows the relationship of some key classes that make up the FireMonkey hierarchy.

You can also download a FireMonkey architecture schematic poster (PDF file) at

http://www.embarcadero-info.com/firemonkey/firemonkey_chart_poster.pdf.

http://members.adug.org.au/2011/12/15/how-to-create-your-own-firemonkeyimage-filtereffect-to-use-with-firemonkey/
http://members.adug.org.au/2011/12/15/how-to-create-your-own-firemonkeyimage-filtereffect-to-use-with-firemonkey/
http://www.embarcadero-info.com/firemonkey/firemonkey_chart_poster.pdf

E-Learning Series: Getting Started with Windows and Mac Development

Page 7

The following UML diagrams show parts of the ImageFX, TFilter, TShaderFilter and Effects classes:

E-Learning Series: Getting Started with Windows and Mac Development

Page 8

E-Learning Series: Getting Started with Windows and Mac Development

Page 9

Image Effects

The FireMonkey built-in ImageFX engine provides more than 60 GPU-powered effects. These effects are

non-visual components that can be found in the Effects category on the Tool Palette. All the provided

effects can be simply enabled or disabled by setting the Enabled flag from the Form Designer, or

programmatically.

Almost all the effects have specific properties that you can customize depending on the application. For

example, all transition effects ha ve the Progress property, which is used to set the amount of progress

(in percentages, %) through the transition from the first texture to the second texture. The specified

properties can be found in the Object Inspector when the effect is selected in the Structure View. All

numeric properties of any effect can be animated to provide a gradual evolution in time. Image effects

can also be triggered.

FireMonkey effects are built using pixel shader filters. The shaders modify pixels, either individually or in

concert with others, to achieve various visual effects. These effects are not limited to bitmap image

E-Learning Series: Getting Started with Windows and Mac Development

Page 10

data; effects can be applied to the pixels of any 2D control in the user interface. Effects can be used at

run time or at design time to change the look of the application's user interface. The FireMonkey effects

do not disable any controls or functionalities when they are applied.

Image effects do not work with 3D controls; however they do work with TViewport3D, a 2D control that

displays 3D content.

The following bitmaps contain all of the image and transition effects that are available in the XE2 Tool

Palette:

TEffect, TImageFXEffect, TFilter and TShaderFilter

http://docwiki.embarcadero.com/Libraries/en/FMX.Types3D.TViewport3D

E-Learning Series: Getting Started with Windows and Mac Development

Page 11

TEffect is the base class for most of the FireMonkey graphic effects classes. Most of the classes in

FMX.Effects are descendants (either direct or indirect) of TEffect. FMX.Filter.Effects. TImageFXEffect, a

descendant of TEffect, is the base class for some of the filter effects in FMX.Filter.Effects. TFilter is an

abstract base class for every filter.

TEffect descendants are non-visual components that can be found in the Effects category on the Tool

Palette. You can apply an effect to any FireMonkey visual component. To use a descendant of TEffect at

design time, make sure that the effect is a child of the component; for example, a button on a form. To

add an effect, drop an e ffect component from the Tool Palette onto the form, and then, in the Structure

View, move the effect component so that it is a child of the button control in the hierarchy.

To set an action that will trigger the effect when applied to the visual component, use the Trigger

property in the Object Inspector. Each of the TEffect subclasses have additional properties that you can

configure. In FireMonkey, non-visual components are not visible at design time, but they can be seen in

the Structure View.

TShaderFilter is a special filter class for the GPU shaders. TShaderFilter is the base class for many of the

filters used in the image effects.

Types of Image Effects

The Image Effects fall into five difference categories: effects that modify pixels individually, effects that

consider a pixel’s neighboring pixels, the additive effects, effects that modify the image as a whole and

the transition effects.

Effects That Modify Pixels Individually

These effects typically apply changes to color. Each pixel’s color can be considered on its own.

 TInvertEffect – inverts the color of the textures of visible objects

 TColorKeyAlphaEffect - makes pixels of a particular color transparent. Set the ColorKey property

to specify the key of the color to become transparent. The tolerance between colors can be

changed through the Tolerance property. If Tolerance is 0, no color becomes transparent. As

Tolerance is increased, the number of colors that become transparent increases too.

 TMaskToAlphaEffect – converts a color or grayscale image that is masked by alpha.

 TMonochromeEffect - changes the texture of visible objects to a monochrome texture.

 TBloomEffect - intensifies bright regions for the textures of visible objects. The brightness and

saturation of the base image and the bloomed regions can be set independently th rough the

TBloomEffect properties.

 TGloomEffect – intensifies the dark regions for the textures of visible objects. The brightness
and saturation of the base image and the gloomed regions can be set independently through

the TGloomEffect properties.

 TContrastEffect – changes the brightness and contrast for the textures of visible objects. To

modify the brightness, use the Brightness property. To increase the contrast, use the Contract

E-Learning Series: Getting Started with Windows and Mac Development

Page 12

property. Default values are used for the Brightness and Contrast properties (Brightness=0,

Contrast=1.5).

 THueAdjustEffect – changes the overall hue (the variety or tint of a color) for the textures of

visible objects. To mody the hue, use the Hue property.

 TFillRGBEffect – fills the non-transparent pixels of a visible object’s texture with a solid color.
The color to fill the texture’s pixels can be set using the Color property.

 TFillEffect – fills the texture of a visible object with a solid color. The color to fill the texture can

be set using the Color property.

Effects that Consider a Pixel’s Neighbors

This type of effect is applied using algorithms that use a pixel's neighbors to define the new value of the

pixel. These include the Blur and Distortion effects.

 TBlurEffect - blurs the texture of visible objects. Beside properties provided by TEffect,
TBlurEffect provides a property, called Softness, which you can use to change the blur softness.

 TDirectionalBlurEffect - blurs, using a directional blur algorithm, the texture of visible objects.

The direction of the blur can be changed using the Angle property, and the blur amount of the

effect can be changed using the BlurAmount property.

 TBoxBlurEffect - blurs the texture of visible objects using a Box blur algorithm. You can change

the blur amount of the effect using the BlurAmount property.

 TGaussianBlurEffect - blurs the texture of visible objects using a Gaussian blur algorithm. You
can change the blur amount of the effect using the BlurAmount property.

 TRadialBlurEffect - blurring effect using a radial blur algorithm on the texture of visible objects.

The TRadialBlurEffect produces ripples and the center of the ripples can be set using the Center

property. You can change the blur amount of the effect using the BlurAmount property.

 TBandedSwirlEffect - swirls the bands of the texture of visual objects in spirals. The center of
the swirl is specified through the Center property. The swirl aspect can be customized through

the AspectRatio property. The amount of spiral winding can be set through the Strength

property. The number of the bands in the swirl can be set through the Bands property.

 TBandsEffect - creates bands of bright regions from the texture of visual objects. The density of

the bands can be set through the BandDensity property. The intensity of the bands can be set

through the BandIntensity property. If BandIntensity is set to 0, TBandsEffect has no visual

effect. If BandDensity is set to 1, the image brightness gradually increases from the left edge to

the right edge, until it reaches the BandIntensity value.

 TMagnifyEffect - magnifies a circular region of the texture of visual objects. TMagnifyEffect
imitates the effect of a magnifying glass. The center of the circular region is specified through

the Center property. The aspect of the circular re gion can be customized through the Radius and

AspectRatio properties. The magnification factor can be set through the Magnification property.

TMagnifyEffect applies the same magnification over the entire surface of the circular region.

 TPinchEffect - pinches a circular region of the texture of visual objects. The center of the circular

region is specified through the Center property. The circular region's aspect can be customized

through the AspectRatio property. The amount of winding of the pinched area c an be set

through the Strength property. The circular region's radius is specified through the Radius

property.

E-Learning Series: Getting Started with Windows and Mac Development

Page 13

 TRippleEffect - superimposes rippling waves upon the texture of visual objects. The center of

the ripples is specified through the Center prope rty. The ripples' aspect can be customized

through the Amplitude, AspectRatio, and Phase properties. The amount of ripples is set through

the Frequency property.

 TSmoothMagnifyEffect - smoothly magnifies a circular region of the texture of visual objects.
The center of the circular region is specified through the Center property. The magnified circular

area is composed of two concentric zones: a) The inner circular area, where a simple

TMagnifyEffect effect is applied. The InnerRadius property specifies th e radius of the centered

circular area. In this area, a single magnifying factor is applied. b) The outer circular area. The

OuterRadius property specifies the radius of this area. In this area, the magnifying factor

gradually increases until it reaches the magnifying factor of the inner circular area, from the

outside radius to the inner radius. If the OuterRadius value is smaller than or equal to the

InnerRadius value, then TSmoothMagnifyEffect has the same effect as TMagnifyEffect. The

aspect of the circular region can be customized through the AspectRatio property. The

magnification factor can be set through the Magnification property.

 TSwirlEffect - swirls the texture of visual objects in a spiral. The center of the swirl is specified

through the Center property. The swirl aspect can be customized through the AspectRatio

property. The amount of spiral winding can be set through the Strength property.

 TWaveEffect - applies a wave pattern to the texture of visual objects. The amount of waves can
be changed by changing the WaveSize property. The wave aspect can be modified by changing

the Time property. Animating Time simulates the changes waves go through in time.

 TWrapEffect - wraps the texture of visual objects, following two curves. TWrapEffect use s

Bezier curves. A Be zier curve is defined by four points. The TWrapEffect properties define, for

each of the curves, the end and start points, and two control points. The wrapping is applied by

curving the image, starting from the left and right edges. The LeftControl1, LeftControl2,

LeftEnd, and LeftStart properties specify the points that define the curve used at the left side of

the texture. The RightControl1, RightControl2, RightEnd, and RightStart properties specify the

points that define the curve used at the right side of the texture.

Additive Effects

Additive Effects affect the images by adding new elements to the original image. The elements can be

added to the edges of the image or to the entire image.

 TGlowEffect - creates a glow effect around a visible object. Beside the properties provided by
TEffect, TGlowEffect provides three specific properties: GlowColor, Opacity, and Softness.

 TInnerGlowEffect - creates a glow effect around a visible object. Beside the properties provided

by TEffect, TGlowEffect provides three specific properties: GlowColor, Opacity, and Softness.

 TReflectionEffect - creates a reflection effect below a visible object. Beside the properties
provided by TEffect, TReflectionEffect provides three specific properties: Length, Offset, and

Opacity.

 TShadowEffect - creates a shadow effect for visible objects. Beside the properties provided by

TEffect, TShadowEffect provides five specific properties: Direction, Distance, Opacity,

ShadowColor, and Softness.

 TEmbossEffect - creates an effect that embosses the texture of visible objects. TEmbossEffect

finds the contrast lines and adds shadows to them in order to depress or r aise the image relative

E-Learning Series: Getting Started with Windows and Mac Development

Page 14

to its background. The embossing amplitude and width can be set through the Amount a nd

Width properties.

 TPaperSketchEffect - creates an effect that sketches the texture of visual objects. The size of the

brush with which TPaperSketchEffect draws the sketch can be set through the BrushSize

property.

 TPencilStrokeEffect - creates an effect that sketches the texture of visual objects, so that they
appear pencil drawn. The size of the stroke with which TPencilStrokeEffect draws the sketch can

be set through the BrushSize property.

 TPixelateEffect - creating an effect that pixelates the texture of visible objects. TPixelateEffect

reduces the texture details. The amount of details can be changed through the BlockCount

property.

 TSepiaEffect - creates a sepia (dark brown-grey) effect. TSepiaEffect affects the texture of visual
objects. The intensity of the sepia color applied over the texture can be set through the Amount

property.

 TSharpenEffect - creates an effect that sharpens the texture of visible objects. TSharpenEffect

increases the difference in intensity between the texture's pixels. The sharpening amount can

be set through the Amount property.

 TToonEffect - creates an effect that applies cartoon-like shading to the texture of visible objects.
TToonEffect cartoons the object texture by decreasing the levels of color used in the textur e.

The numbers of the levels can be set through the Levels property.

Effects that Modify the Image as a Whole

These effects apply geometric changes over the input image.

 TAffineTransformEffect - creates an effect that applies an affine transformation (preserves the

straight lines and the ratios of distances between points lying on the straight lines. It does not

necessarily preserve the angles or the lengths of the straight lines) to the texture of visible

objects. TAffineTransformEffect offers the poss ibility to rotate and scale the texture of the

object to which the effect is applied. The changes are applied only to the object's texture, and

not to the entire object. The object's dimensions and position are not affected. To apply a

rotation transformation, change the Center and Rotation properties. To scale the object's

texture, set the Scale property.

 TCropEffect - crops a rectangle area from the texture of visible objects. The rectangle area to be

cropped and displayed as the object's texture is specified by the LeftTop and RightBottom

properties. The cropped area is repositioned in the upper-left corner of the object, if it is

necessary, and scaled to fit the object boundaries.

 TNormalBlendEffect - creates a normal blending of two images. TNormalBlendEffect affects the
textures of visual objects. The normal blending is made between the texture of the object to

which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TNormalBlendEffect has no visual effect. If the Target's image has no transparent

areas, the object's image is completely covered by Target.

 TPerspectiveTransformEffect - creates an effect that applies a perspective transformation to the

texture of visible objects. The perspective transformation can be set and customized by using

the BottomLeft, BottomRight, TopLeft, and TopRight properties. Each property specifies a corner

point of the final transformation.

E-Learning Series: Getting Started with Windows and Mac Development

Page 15

 TTilerEffect - creates an effect that tiles the texture of visual objects across multiple rows and

columns. The number of rows and columns can be set through the HorizontalTileCount and

VerticalTileCount properties. The vertical and horizontal offsets of each tile can be set through

the VerticalOffset and HorizontalOffset properties. The size of a tile is determined by the

number of columns and rows in which the original size of the texture is split. The texture is

resized to fit the dimensions of a tile, without preserving the ratio.

Transition Effects

FireMonkey includes over twenty image transition effects, in which source pixels are progressively

transformed into a target bitmap image, from simple fades to fancy banded swirls. The progress of the

transformation is deterministic and can be set to an arbitrary percentage. This perc entage can be

animated to transition over time by using the Progress property.

 TBandedSwirlTransitionEffect - makes a transition between the texture of visible objects and
another texture, swirling the texture of visible objects. The transition is made be tween the

texture of the object to which the effect is applied and the bitmap specified by the Target

property. If Target is not specified, TBandedSwirlTransitionEffect also uses the texture of the

object to which the effect is applied as the second texture of the transition.

TBandedSwirlTransitionEffect swirls the texture of the object, forming spirals. The frequency

with which spirals are formed can be set through the Frequency property and the amount of

twisting in the spirals can be set through the Strength property. The center of the swirling can

be set through the Center property.

 TBlindTransitionEffect - creates a blinds effect that makes a transition between the texture of

visible objects and another texture. The transition is made between the text ure of the object to

which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TBlindTransitionEffect has no visual effect. TBlindTransitionEffect divides the texture

of the object into strips, forming blinds . The blinds' number can be set through the

NumberOfBlinds property.

 TBloodTransitionEffect - applies a transition between the texture of visible objects and another
texture, using a dripping motion. The transition is made between the texture of the objec t to

which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TBloodTransitionEffect also uses, as the second texture of the transition, the texture

of the object to which the effect is applied. The dripping can be customized by changing

RandomSeed.

 TBlurTransitionEffect - makes a blur transition between the texture of visible objects and

another texture. The transition is made between the texture of the object to which the effect is

applied and the bitmap specified by the Target property. If Target is not specified,

TBlurTransitionEffect also uses the texture of the object to which the effect is applied as the

second texture of the transition.

 TBrightTransitionEffect - makes a transition between the texture of visible objects and another
texture by brightening the two textures. The transition is made between the texture of the

object to which the effect is applied and the bitmap specified by the Target property. If Target is

not specified, TBrightTransitionEffect also uses the texture of the object to which the e ffect is

applied as the second texture of the transition.

E-Learning Series: Getting Started with Windows and Mac Development

Page 16

 TCircleTransitionEffect - applies a transition between the texture of visible objects and another

texture, using a circle mask. The transition is made between the texture of object to which the

effect is applied and the bitmap specified by the Target property. I f Target is not specified,

TCircleTransitionEffect has no visual effect. TCircleTransitionEffect blinds the object's texture in

a circular area. The circular's area size is specified by the Size property and its center is specified

by Center. The circular's area is correlated to the object size and influenced by the Progress

property. If the object has a rectangular shape, the blinded area is an ellipse. The circle fuzziness

can be changed through the FuzzyAmount property.

 TCrumpleTransitionEffect - makes a transition between the texture of visible objects and
another texture by crumpling the two textures. The transition is made between th e texture of

the object to which the effect is applied and the bitmap specified by the Target property. If

Target is not specified, TCrumpleTransitionEffect also uses the texture of the object to which the

effect is applied as the second texture of the tra nsition. The applied distortions can be changed

through the RandomSeed property.

 TDissolveTransitionEffect - makes a transition between the texture of visible objects and

another texture, by dissolving random areas. The transition is made between the text ure of the

object to which the effect is applied and the bitmap specified by the Target property. If Target is

not specified, TDissolveTransitionEffect has no visual effect. The dissolved areas can be changed

through the RandomSeed property.

 TDropTransitionEffect - makes a transition between the texture of visible objects and another
texture, by randomly dropping down the pixels columns of the first texture. The transition is

made between the texture of the object to which the e ffect is applied and the bit map specified

by the Target property. If Target is not specified, TDropTransitionEffect also uses the texture of

the object to which the effect is applied as the second texture of the transition. Change

RandomSeed property to change the seed that determine the dripping.

 TFadeTransitionEffect - makes a transition between the texture of visible objects and another

texture by fading the two textures. The transition is made between the texture of the object to

which the effect is applied and the bitmap specifi ed by the Target property. If Target is not

specified, TFadeTransitionEffect has no visual effect.

 TLineTransitionEffect - makes a transition between the texture of visible objects and another
texture, using a line to tie the textures. The transition is made between the texture of the

object to which the effect is applied and the bitmap specified by the Target property. If Target is

not specified, TLineTransitionEffect has no visual effect. The line that delimits the two textures is

defined through the Origin, Offset, and Normal properties. To set the fuzziness amount of the

line, set the FuzzyAmount property. The progress of the transition between the two textures

can be changed by using the Progress property. When Progress is set to 0%, the line passes

through the Origin point. If Progress is set to 100%, the line passes through the Offset point. The

second point that defines the line is calculated depending on Normal. Normal determines the

line orientation. If the X coordinate of Normal is 0, then the li ne is parallel with the X axis. If the

Y coordinate of Normal is 0, then the line is parallel with the Y axis.

 TMagnifyTransitionEffect - makes a transition between the texture of visible objects and

another texture, using a smooth magnify (smoothly magnifies a circular region) effect. The

transition is made between the texture of the object to which the effect is applied and the

bitmap specified by the Target property. If Target is not specified, TMagnifyTransitionEffect also

uses the texture of the object to which the effect is applied as the second texture of the

transition. TMagnifyTransitionEffect applies a smooth magnify effect on the object's texture,

E-Learning Series: Getting Started with Windows and Mac Development

Page 17

and inserts the Target in the middle of the magnified area. The Target is also distorted when

applying the effect. The center of the magnified area is specified by Center.

 TPixelateTransitionEffect - makes a transition between the texture of visible objects and another

texture by applying a pixelating effect over the two textures. The transition is made between

the texture of the object to which the effect is applied and the bitmap specified by the Target

property. If Target is not specified, TPixelateTransitionEffect also uses the texture of the object

to which the effect is applied as the second texture of the transition.

 TRippleTransitionEffect - makes a transition between the texture of visible objects and another
texture, imitating water ripples. The transition is made between the texture of the object to

which the effect is applied and the bitmap s pecified by the Target property. If Target is not

specified, TRippleTransitionEffect also uses the texture of the object to which the effect is

applied as the second texture of the transition. The ripples are centered and applied over both

textures.

 TRotateCrumpleTransitionEffect - makes a transition between the texture of visible objects and

another texture by crumpling the two textures. The transition is made between the texture of

the object to which the effect is applied and the bitmap specified by the Target property. If

Target is not specified, TRotateCrumpleTransitionEffect also uses the texture of the object to

which the effect is applied as the second texture of the transition. The crumpling is applied by

rotating the textures, clockwise, from the margins. The rotation center is in the center of the

textures. The distortions that form the crumpling can be changed through the RandomSeed

property.

 TSaturateTransitionEffect - makes a transition between the texture of visible objects and
another texture by saturating the first texture. The transition is made between the texture of

the object to which the effect is applied and the bitmap specified by the Target property. If

Target is not specified, TSaturateTransitionEffect also uses the texture of the o bject to which the

effect is applied as the second texture of the transition. The transition is made after the first

texture is saturated.

 TShapeTransitionEffect - makes a transition between the texture of visible objects and another

texture by wiping an irregular shape. The transition is made between the texture of the object

to which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TShapeTransitionEffect has no visual effect. The wiped irregular shape is positioned in

the middle of the textures.

 TSlideTransitionEffect - makes a transition between the texture of visible objects and another
texture by sliding the textures. The transition is made between the texture of the object to

which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TSlideTransitionEffect also uses the texture of the object to which the effect is applied

as the second texture of the transition. The maximum distance of the slide, on the X a nd Y axes,

can be set using the point specified through the SlideAmount property.

 TSwirlTransitionEffect - makes a transition between the texture of visible objects and another

texture by swirling the first texture. The transition is made between the text ure of the object to

which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TSwirlTransitionEffect also uses the texture of the object to which the effect is applied

as the second texture of the transition. TSwirlTransitionEffect swirls the texture of the object,

producing spirals. The amount of twisting of the spirals can be set through the Strength

property. The swirling center is in the center of the texture.

 TWaterTransitionEffect - makes a transition between the texture of visible objects and another
texture, using a troubled water effect. The transition is made between the texture of the object

E-Learning Series: Getting Started with Windows and Mac Development

Page 18

to which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TWaterTransitionEffect also uses the texture of the object to which the effect is

applied as the second texture of the transition. TWaterTransitionEffect applies the troubled

water effect over the second texture, and then overlaps it over the first texture (the texture of

the object to which the effect is applied). To change the water troubling, set the RandomSeed

property.

 TWaveTransitionEffect - makes a transition between the texture of visible objects and another

texture, using vertical waves. The transi tion is made between the texture of the object to which

the effect is applied and the bitmap specified by the Target property. I f Target is not specified,
TWaveTransitionEffect also uses the texture of the object to which the effect is applied as the

second texture of the transition. The wave effect is applied to the first texture.

 TWiggleTransitionEffect - applies a transition between the texture of visible objects and another

texture, by wiggling the two textures. The transition is made between the textu re of the object

to which the effect is applied and the bitmap specified by the Target property. If Target is not

specified, TWiggleTransitionEffect also uses the texture of the object to which the effect is

applied as the second texture of the transition.

You can see some of these effects in action (using animated GIFs) on the Embarcadero DocWiki at

http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Image _Effects

Setting Effect Triggers

Image effects can be triggered from property changes, setting the Enabled flag in response. Triggers do

not work with every arbitrary property, but only with particular properties that are checked during the

component's internal event processing. All built-in triggers check boolean properties, and by convention

the names of these properties start with "Is".

TControl provides four triggers for every control and shape:

 IsDragOver

 IsFocused

 IsMouseOver (requires HitTest set to True)

 IsVisible

Other built-in triggers include:

 IsActive (TCustomForm)

 IsChecked (TMenuItem)

 IsOpen (TEffect)

 IsPressed (FMX.Controls.TCustomButton)

 IsSelected (TMenuItem, TTabItem, TListBoxItem, TTreeViewItem)

 A slightly different set of triggers is provided for animation effects (see the Animations section below).

FMX.Types.TFmxObject defines the procedures StartTriggerAnimation, StartTriggerAnimationWait, and

StopTriggerAnimation in addition to ApplyTriggerEffect.

http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Image_Effects

E-Learning Series: Getting Started with Windows and Mac Development

Page 19

Effects can be set to apply when any of these properties change as the result of code or user action.

When the trigger condition no longer holds, the effect is removed. Trigger conditions are limited to

equality checks, and if the trigger contains more than one condition, they must all evaluate to tr ue for

the trigger to fire.

A trigger is expressed as a string containing one or more trigger conditions, separated by semicolons.

Each trigger condition consists of the property name, an equal sign, and the trigger value. All the built -in

triggers are boolean, so their value must be either True or False. For example:

IsMouseOver=true

Trigger conditions are stored in the Trigger property.

Using Image Effects

FireMonkey provides many different types of built-in image effects that modify an image either

individually or in concert with others to achieve various visual effects.

Use the following steps to create a FireMonkey application that uses several basic image effects.

Step 1: Apply an Effect to a Picture

In FireMonkey, applying an image e ffect to a picture is a straightforward process. Simply create a

component that holds a picture, and then apply one of the image effect components.

Create a new FireMonkey application (File > New > FireMonkey HD Application).

Place a TImage component on the form. To do so, type “image” in the search box on the Tool Palette,

and then double-click the TImage component:

Selecting a TImage component on the Tool Palette

http://docwiki.embarcadero.com/RADStudio/en/File:SelectingTImage.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 20

Placing a TImage component on the Form Designer

You can see that the TImage component is not placed at the center of the Form Designer. As shown in

the image, you need to make the size of the image area as big as possible. To do so, select the TImage

component on the Form Designer, and then change the Align property to alClient in the Object Inspector

to make the size of the TImage component be the same as the client area of the form.

Changing the Align property to alClient

Select the picture to which you want to apply the image effect. The TImage component holds the picture
in its Bitmap property. Select the Bitmap property on the Object Inspector, and use the Edit… menu to

select a picture.

http://docwiki.embarcadero.com/RADStudio/en/File:TImageOnFormDesigner.png
http://docwiki.embarcadero.com/RADStudio/en/File:SetAlignForTImage.png
http://docwiki.embarcadero.com/RADStudio/en/File:TImageWithAlClient.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 21

Selecting a picture on a TImage component

Now you can select an Image Effect Component. Go to the Tool Palette, type “effect” in the search b ox,

and select TRippleEffect. In the Tool Palette you can find many effects available. You can read detailed

explanations of these effects at our API Reference (FMX.Filter.Effects).

Now the RippleEffect component is displayed on the Structure Pane.

To apply an effect, an effect component has to be defined as a child of another component. In this case,

RippleEffect1 should be defined as a child of Image1. To do so, drag RippleEffect1 and drop it to Image1

component on the Structure Pane.

http://docwiki.embarcadero.com/Libraries/en/FMX.Filter.Effects
http://docwiki.embarcadero.com/RADStudio/en/File:AssignBitmapToTImage.png
http://docwiki.embarcadero.com/RADStudio/en/File:GoldenGateBridgeOnForm.png
http://docwiki.embarcadero.com/RADStudio/en/File:SelectRippleEffect.png
http://docwiki.embarcadero.com/RADStudio/en/File:RippleEffectOnStructure.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 22

Making the RippleEffect component a child of the Image1 component

Now you can see that RippleEffect is already in works on the Form Designer.

Applying a ripple effect to a picture on the Form Designer

You can also change how the RippleEffect applies to the image by changing some its properties:

 Frequency - Specifies the frequency of the ripples. Frequency is a System.Single value that takes
values in the range from 0.00 through 100.00. If Frequency is not explicitly set, it is considered

equal to 70.

 Amplitude – Specifies the amplitude of the ripples. Amplitude is a System.Single value that takes

values in the range from 0.00 through 1.00. If Amplitude is not explicitly set, it is considered

equal to 0.1.

 AspectRatio - Specifies the ratio between the width and height of the ripples. AspectRatio is a
System.Single value that takes values in the range from 0.50 through 2.00. If AspectRatio is not

explicitly set, it is considered equal to 1.50.

 Phase - Specifies the phase of the ripples. Phase is a System.Single value that takes values in the

range from -20.00 through 20.00. If Phase is not explicitly set, it is considered equal to 0.00.

 Center - Center is a TPointF value. If Center is not explicitly set, it is considered equal to

(150,150). Assign Center a TPointF value with the X and Y coordinates or use the PointF function

as follows:

// Delphi code:
RippleEffect1.Center := PointF(0, 0);
// C++ code:
RippleEffect1->Center = PointF(250,150);

http://docwiki.embarcadero.com/RADStudio/en/File:SetRippleEffectAsChild.png
http://docwiki.embarcadero.com/RADStudio/en/File:RippleEffectAsChildOfImage.png
http://docwiki.embarcadero.com/RADStudio/en/File:RippleEffectInAction.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 23

For example, changing the Frequency property to 20 changes the effect as displayed in the following

image.

Step 2: Using a Trigger to Enable an Effect.

Using the above example, for the RippleEffect set the Enabled property to False.

Change the Trigger property to IsMouseOver=True

Run the application and move the mouse over the bitmap, the RippleEffect will take place.

The Shader Filter Sample Project

You can find the ShaderFilters sample project at: Start > Programs > Embarcadero RAD Studio XE2 >

Samples and then navigate to FireMonkey\ShaderFilters

Subversion Repository for the ShaderFilters sample project:

https://radstudiodemos.svn.sourceforge.net/svnroot/radstudiodemos/branches/RadStudio_XE2/FireM

onkey/ShaderFilters/.

The ShaderFilters sample project uses the following components:

 Three TImage objects

 Three TListBox objects

 Two TSplitter objects

 Two TPanel objects

 A TAniIndicator

 Two TButton objects

 A TLabel

 A TStyleBook

 Two TLayout objects

https://radstudiodemos.svn.sourceforge.net/svnroot/radstudiodemos/branches/RadStudio_XE2/FireMonkey/ShaderFilters/
https://radstudiodemos.svn.sourceforge.net/svnroot/radstudiodemos/branches/RadStudio_XE2/FireMonkey/ShaderFilters/
http://docwiki.embarcadero.com/RADStudio/en/File:RippleEffectWithDifferentFrequency.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 24

The first TListBox displays the main categories of effects. When you select a category of effects from the

first TListBox, a list with several specific effects is displayed in the second TListBox. When you select a

specific item from the list of effects, the respective effect is applied to the image.

The second TListBox is subordinated to the first one. The second TListBox displays the effects

subordinated to the category selected from the first TListBox.

The selected effect is applied to the Source and Target images and a preview of the result is displayed on

the Destination area.

Some of the effects have additional characteristics (BlurAmount, BrushSize, and so on). When you select

one of these effects, the options are displayed in the third TListBox. Use the TScrollBar to change the

characteristics of the effect.

The effects from the Transition main category have an additional butt on labeled as Play/Pause. Click this

button to preview the picture transition.

When you click the Benchmark button, the label next to the button displays the amount of time that

passes until the effect is applied to the picture.

Animations

Animations modify property values over time. They can be started automatically or manually, both with

an optional delay. After the animation has run its course over the defined time period, it can stop, start

over, or do the same but in reverse.

Non-visual animation components are available for Color, ColorKey, Gradient, Float, FloatKey, Rect,

Bitmap, BitmapList, and Path properties.

E-Learning Series: Getting Started with Windows and Mac Development

Page 25

In the Object Inspector you can see the properties of a component can be animated if you see a film

icon in front of a property value.

You can also animate property values in your code.

Types of Animations

Animations fall into three categories:.

 Interpolations from a start value to an end value:

o TFloatAnimation changes any numeric property like position (X, Y, and Z axes must be

done individually), rotation, and opacity.

o TRectAnimation changes the location of the four edges of a TBounds property.

o TColorAnimation changes any string or integer property that contains a color, including

those of type TAlphaColor (which is actually a Cardinal number), by modifying the red,

green, blue, and alpha values of the color.

o TGradientAnimation changes a gradient (type TGradient) by modifying the colors of

each point that defines the gradient.

o TBitmapAnimation transitions from a starting bitmap image to another by drawing the

final image (type TBitmap) with increasing opacity, causing it to fade into view.

 Interpolating through a series of values, not just two: from the first to the second, from the
second to the third, and so on:

E-Learning Series: Getting Started with Windows and Mac Development

Page 26

o TFloatKeyAnimation transitions through a list of numbers.

o TColorKeyAnimation transitions through a list of colors.

o TPathAnimation modifies an object's 2D Position to follow a Path, optionally rotating it

along the way.

 Stepping through a list without interpolation:

o TBitmapListAnimation works like a timed slideshow, with all images combined
horizontally into a single bitmap. With a fast frame rate (short duration and/or many

images), it looks like a movie.

Creating Animations

Animations attach as children of the object being animated, just like any other subcomponent. Then the

PropertyName property is set to a dotted property path, as used with System.TypInfo functions like

GetPropInfo; for example, "Opacity" and "Position.Y".

In the Object Inspector, commonly animated properties are indicated with a film strip icon. Choosing to

create an animation from the property value's drop-down menu will automatically set the

PropertyName. Animation objects added from the Component Palette must set the PropertyName

manually.

TFmxObject provides a few convenience methods to create numeric and color animations from code,

with the PropertyName and ending value as the required arguments. These animations always start

immediately from the current value, are non-looping, and free themselves when finished. The numeric

animations can also start with a delay or wait on the main thread until finished.

AnimationType and Interpolation Properties

AnimationType and Interpolation are two important animation properties.

AnimationType determines how the interpolation of an animation is applied. Use TAnimationType to

specify how the value of a property changes from its starting value to its ending value (StopValue).

Imagine the graph of the quadratic function: y = x**2. The slope of the graph is zero at x = 0. That means

that y changes very slowly near x = 0. As x increases, the slope gets steeper and steeper, meaning that y

is changing faster and faster. x represents time in the animation, and y is the value of the property being

animated.

AnimationType can have one of the following values:

 atIn - The curve that applies to the TInterpolationType for this animation starts at the starting
value of the property animated.

 atOut - The curve that applies to the TInterpolationType for this animatio n starts at the ending

value of the property animated and proceeds backwards to the starting value.

E-Learning Series: Getting Started with Windows and Mac Development

Page 27

 atInOut - The curve that applies to the TInterpolationType for this animation starts at both the

starting value and the ending value of the property animated and meets at the center point.

The Interpol ation property for an animation determines how the rate at which the current value (or

StartValue) of a property is changed to the destination value (StopValue) over time. On a graph plotting

the value of a property the animation is applied to (using the TAnimation PropertyName property) one

endpoint is represented by the start value at t=0. The other endpoint is the stop value at t=Duration

seconds. Many different paths can connect these two points. The only requirement is that time keeps

moving forward! TInterpolationType provides a variety of paths to choose from.

Interpolation can have one of the following values:

 itLinear - A linear interpolation. The property value this animation applies to changes con stantly

over time.

 itQuadratic - A quadratic function is applied to the path between the start and stop points. The

slope of the path is zero at the start point and increases constantly over time. A scalar is applied

to the function to make the endpoint fa ll on the path.

 itCubic - The interpolation is of the form y = x**3. The slope of the path is zero at the start point
and increases much faster than the quadratic function over the path.

 itQuartic - The interpolation is of the form y = x**4. The slope of the path is zero at the start

point and increases much faster than the quadratic function over the path.

 itQuintic - The interpolation is of the form y = x**5. The slope of the path is zero at the start
point and increases much faster than the quadratic function over the path.

 itSinusoidal - The interpolation is of the form y = sin(x). The slope of the path is zero at the start

point and places the first inflexion of the sin curve (x=pi) at the stop point.

 itExponential - The interpolation is of the form y = e**x. The slope of the path is one at the start

point and increase much faster than the quadratic function over the path.

 itCircular - The path between the start and stop point for this interpolation is a quarter of a
circle. The slope of the path is zero at the start point and verticle at the stop point.

 itElastic - The path does not follow a geometric interpolation. The value (y coordinate) may

decrease, moving back toward the Start Value, but time (x value) must always move in a positive

direction.

 itBack - The path does not follow a geometric interpolation. The value (y coordinate) may
decrease, moving back toward the Start Value, but time (x value) must always move in a positive

direction.

 itBounce - The path depicts a bouncing ball. The path is made up of circular curves with

curvature away from the straight line that connects the start and stop points. These curves are

connected by sharp points.

Several properties of the TAnimation and TFloatAnimation can affect the path specified by the

interpolation. The descriptions above are for:

 StartFromCurrent = True

 AnimationType = atIn

Setting the AnimationType to atOut causes everything said above about the start point to apply to the

stop point. See documentation for these animation properties for thei r effect.

E-Learning Series: Getting Started with Windows and Mac Development

Page 28

With an AnimationType property value of atIn and a TInterpolationType of itQuadratic, the value of the

property that this animation is applied to (PropertyName) changes slowly near the starting point

(equivalent to the quadradic function at x = 0).

With a TAnimationType of atOut, change is slow near the endpoint. For a TAnimationType of atInOut,

change is slow at both ends. The curve is mirrored about the center point and meets in the middle.

With an Interpolation property of itLinear, the value of the property changes linearly over time, and the

path between our start and stop points is a straight line.

Starting and Stopping Animations

If an animation's Enabled property is set to True in the Form Designer, it will automatically Start after

the application starts execution. Setting Enabled to True in code will also Start the animation; setting it

to False will Stop it. Conversely, calling the Start() and Stop () methods will set Enabled to match.

In TFloatAnimation, StartFromCurrent will automatically overwrite the StartValue with the current

property value when the animation is started (either by calling Start or if it is Enabled). There is no point

setting StartValue if StartFromCurrent is True.

This is especially relevant when manually looping or reusing animation objects. If the previous run used

StartFromCurrent, and the next run uses a StartValue, then StartFromCurrent must be set to False.

To stop the animation:

 Setting Pause to True will allow the animation to resume from that point, by setting it back to
False.

 Calling Stop will skip to the end of the animation. The property is set to the final value

(StopValue if Inverse is False, StartValue if Inverse is True), and OnFinish fires.

 StopAtCurrent does not set the property to the fina l value, but still fires OnFinish.

Animation Triggers

In addition to automatically starting with Enabled and manually calling Start and Stop, animations can be

triggered from property changes. Triggers don 't work with every arbitrary property, but only w ith

particular properties that are checked during the component's internal event processing. All built -in

triggers check boolean properties, and by convention the names of these properties start with "Is".

TControl and TControl3D provide four triggers for every control and shape:

 IsMouseOver

 IsDragOver

 IsFocused

 IsVisible

E-Learning Series: Getting Started with Windows and Mac Development

Page 29

Other built-in triggers include:

 IsPressed (TCustomButton, TRadioButton, TCheckBox)

 IsChecked (TRadioButton, TCheckBox, TMenuItem)

 IsSelected (TMenuItem, TTabItem, TListBoxItem, TTreeVi ewItem)

 IsExpanded (TTreeViewItem, TExpander)

 IsActive (TCustomForm)

A slightly different set of triggers is provided for other non-animation image effects.

Animations can be set to Start when any of these properties change as the result of code or user action.

When the trigger condition no longer holds, the animation will Stop. Trigger conditions are limited to

equality checks, and if the trigger contains more than one condition, they must all evaluate to true for

the trigger to fire. A trigger is expres sed as a string containing one or more trigger conditions, separated

by semicolons. Each trigger condition consists of the property name, an equal sign, and the trigger value.

All the built-in triggers are boolean, so their value must be either "true" or " false". For example:

IsMouseOver=true

Trigger conditions are stored in two properties, Trigger and TriggerInverse. As their names suggest, the

former will simply Start the animation as defined, while the latter will set the animation's Inverse flag

first. Because of the way animations run in reverse, and the way animations will immediately "stop at

the finish" when the condition no longer holds, instead of a single animation with opposite trigger

conditions, sometimes two separate animations defined as opposites are required, each with one of the

opposite triggers.

Inverting and Looping Animations

Inverse works by "running time backwards"; it does not flip the start and stop values. Therefore, with

both Inverse and StartFromCurrent True, the property wil l first jump to StopValue, and then animate

back to the value at the time the animation started: in effect, "stop at current" (like the boolean

StartAtCurrent, not the procedure StopAtCurrent).

An animation can loop repeatedly by setting the Loop property to True, either in the same direction

over and over or back and forth like a pendulum if the AutoRe verse property is set to True.

Controlling Animations using Code

You can also use program code to control animations. In addition to the animations information already

presented, here are a some of the animation properties, methods and events that you can use in your

programs.

Properties:

 Enabled – set to true to start an animation.

E-Learning Series: Getting Started with Windows and Mac Development

Page 30

 Pause – if set to True it pauses the animation until set to False.

 Delay – number of seconds to wait before starting the animation.

 StartFromCurrent – i f set to true, starts the animation for a property at its current value.

 Running – Indicates whether the animation is currently changing the controlled property.
Running is a read-only Boolean value indicating whether the animation is still running.

Considering that an animation processes for Duration seconds, returning from the Start method

or the procedures calling Start is not an indication that the animation has completed. The

OnFinish event handler can also be used to determine when the animation has finished.

Methods:

 Start – initializes the processing of the animation. If you stop the animation before it completes,

the animation resumes at the current value if the StartFromCurrent property is true, otherwise

it starts over at the StartValue.

 Stop – terminates the processing of an animation. The animation property value is moved to
the StopValue property.

 StopAtCurrent – stops at the current property value. Does not change the current value for the

property.

 StartTrigger - sets a trigger for a given animation. Besides user applications, StartTrigger is called

by StartTriggerAnimation, which allows you to dynamically set the same trigger for all the child

animations and for child animations of all the children of the TFmxObject.

 ProcessTick(Time,DeltaTime) - Calls ProcessAnimation a number of times for a given time
period. Time is the current time. DeltaTime is the time period for this step.

 NormalizedTime - Returns the percentage of the completion of the animation. Given the current

time, NormalizedTime returns a number in the range from 0 through 1, indicating how far the

controlled property value has changed from the StartValue to the StopValue. For an

Interpolation of itLinear, NormalizedTime is calculated as CurrentTime/Duration.

NormalizedTime gets much more complicated for the other Interpolation settings. Using

NormalizedTime, the current value for any Interpolation can then be calculated as Result = Start

+ (Stop - Start) * NormalizedTime; This is the calculation done for float animation or color

animation, although color values are not linear.

Events:

 OnProcess - event handler called during the processing of an animation. OnProcess gets called
repeatedly while the value controlled by the animation is changing. If the animation changes the

appearance of the parent object, the parent object is automatically repainted. If processing

inside of OnProcess causes painting outside of the parent's bounding box, call th e form's

Invalidate method. OnProcess is the correct place to monitor and respond to changes in an

animation. Use OnProcess instead of the parent's OnPaint event.

 OnFinish – event handler is called (if one is defined) after the animation has stopped. An

animation continues for a Duration number of seconds after it starts, long after the procedure

calling Start completes. Place any processing needed after the animation completes in the

OnFinish event handler. OnFinish does not get called if the Loop proper ty is True, unless the

Stop method is called. OnFinish is the correct place to monitor and respond to the completion

of an animation.

E-Learning Series: Getting Started with Windows and Mac Development

Page 31

In addition to adding animation components to your form, you can use code to create animations for

controls and their properties.

AnimateFloat

For a TFloatAnimation you can use the following in your code:

AnimateFloat - Creates and runs a TFloatAnimation for an object’s property.

// Delphi
procedure AnimateFloat(const APropertyName: string; const
NewValue: Single; Duration: Single = 0.2; AType:
TAnimationType = TAnimationType.atIn; AInterpolation:
TInterpolationType = TInterpolationType.itLinear);

// C++
void __fastcall AnimateFloat(const System::UnicodeString
APropertyName, const float NewValue, float Duration =
2.000000E-01, TAnimationType AType = (TAnimationType)(0x0),
TInterpolationType AInterpolation =
(TInterpolationType)(0x0));

 Creates a TFloatAnimation and makes its parent this TFmxObject (self).

 Sets the PropertyName property of this float animation to be the string provided in the
APropertyName parameter. This string must be the name of one of the parent's properties that

is of type Float. Use dot notation to reference nested properties. Examples: 'Opacity' and

'Position.X'

 Sets the StopValue property of this float animation to be the short integer provided by the

NewValue parameter.

 Sets the Duration property of this float animation to be the integer provided in the Duration
parameter. Duration is the number of seconds to transition from the current value of t he

property named in the PropertyName property to the value of the StopValue property of this

float animation.

 Sets the AnimationType property of this float animation to be the TAnimationType provided in

the AType parameter.

 Sets the Interpolation property of this float animation to be the TInterpolationType provided in
the AInterpolation parameter.

 Sets the OnFinish event of this float animation to be the DoAniFinished method of this

TFmxObject.

 Sets the StartFromCurrent property of this float animation to be True.

 Calls the Start to start the animation. The property will be animated from its current value to the
StopValue over the Duration time.

 Note: If this object is not Visible at the moment this method is called, no animation runs: the

animation is created, but does not execute.

AnimateFloatDelay – Creates a TFloatAnimation for an object’s property and delays the start of the

execution.

E-Learning Series: Getting Started with Windows and Mac Development

Page 32

// Delphi
procedure AnimateFloatDelay(const APropertyName: string;
const NewValue: Single; Duration: Single = 0.2; Delay:
Single = 0.0; AType: TAnimationType = TAnimationType.atIn;
AInterpolation: TInterpolationType =
TInterpolationType.itLinear);

// C++
void __fastcall AnimateFloat(const System::UnicodeString
APropertyName, const float NewValue, float Duration =
2.000000E-01, float Delay = 0.0, TAnimationType AType =
(TAnimationType)(0x0), TInterpolationType AInterpolation =
(TInterpolationType)(0x0));

 Creates a TFloatAnimation for this object (self).

 AnimateFloatDelay creates a TFloatAnimation and makes its parent this TFmxObject (self).

 Sets the AnimationType property of this float animation to be the TAnimationType provided in
the AType parameter.

 Sets the Interpolation property of this float animation to be the TInterpolationType provided in

the AInterpolation parameter.

 Sets the Delay property of this float animation to be the real number provided in the Delay
parameter.

 Sets the Duration property of this float animation to be the integer provided in the Duration

parameter.

 Sets the PropertyName property of this float animation to be the string provided in the

APropertyName parameter.

 Sets the StartFromCurrent property of this float animation to be True.

 Sets the StopValue property of this float animation to be the real number provided by the

NewValue parameter.

 Calls the Start to start the animation.

AnimateFloatWait – creates a TFloatAnimation and does not return back to your program until the

animation is finished.

// Delphi
procedure AnimateFloatWait(const APropertyName: string;
const NewValue: Single; Duration: Single = 0.2; AType:
TAnimationType = TAnimationType.atIn; AInterpolation:
TInterpolationType = TInterpolationType.itLinear);

// C++
void __fastcall AnimateFloatWait(const
System::UnicodeString APropertyName, const float NewValue,
float Duration = 2.000000E-01, TAnimationType AType =
(TAnimationType)(0x0), TInterpolationType AInterpolation =
(TInterpolationType)(0x0));

 Creates a TFloatAnimation, makes its parent this TFmxObject (self), and does not return until the

animation is finished.

E-Learning Series: Getting Started with Windows and Mac Development

Page 33

 AnimateFloatWait does the following:

 Sets the AnimationType property of this float animation to be the TAnimationType provided in
the AType parameter.

 Sets the Interpolation property of this float animation to be the TInterpolationType provided in

the AInterpolation parameter.

 Sets the Duration event of this float animation to be the integer provided in the Duration
parameter.

 Sets the PropertyName property of this float animation to be the string provided in the

APropertyName parameter.

 Sets the StartFromCurrent property of this float animation to be True.

 Sets the StopValue property of this float animation to be the real number provided by the
NewValue parameter.

 Calls Start to start the animation.

The Animation Multi-Platform sample Delphi program shows how to use these methods in action for

Windows, Mac and iOS. You can find the Animation-Multi-platform sample project at: Start > Programs

> Embarcadero RAD Studio X E2 > Samples and then navigate to FireMonkey\Animation-Multi-platform.

The sample is also available in the RAD Studio SourceForge Subversion Repository for Delphi:

https://radstudiodemos.svn.sourceforge.net/svnroot/radstudiodemos/branches/RadStudio_XE2/FireM

onkey/Animation-Multi-platform/

AnimateColor

Creates a TColorAnimation for this object (self).

// Delphi
procedure AnimateColor(const APropertyName: string;
 NewValue: TAlphaColor;
 Duration: Single = 0.2;
 AType: TAnimationType = TAnimationType.atIn;
 AInterpolation: TInterpolationType =
 TInterpolationType.itLinear);

//C++
void __fastcall AnimateColor(const System::UnicodeString
 APropertyName,
 System::Uitypes::TAlphaColor NewValue,
 float Duration = 2.000000E-01, TAnimationType AType =
 (TAnimationType)(0x0),
 TInterpolationType AInterpolation = (TInterpolationType)(0x0));

 AnimateColor creates a TColorAnimation and makes its parent this TFmxObject (self).

 Sets the AnimationType property of this color animation to be the TAnimationType provided in

the AType parameter.

 Sets the Interpolation property of this color animation to be the TInterpolationType provided in
the AInterpolation parameter.

 Sets the OnFinish event of this color animation to be the DoAniFinished method of this

TFmxObject.

https://radstudiodemos.svn.sourceforge.net/svnroot/radstudiodemos/branches/RadStudio_XE2/FireMonkey/Animation-Multi-platform/
https://radstudiodemos.svn.sourceforge.net/svnroot/radstudiodemos/branches/RadStudio_XE2/FireMonkey/Animation-Multi-platform/

E-Learning Series: Getting Started with Windows and Mac Development

Page 34

 Sets the Duration property of this color animation to be the integer provided in the Duration

parameter. Duration is the number of seconds to transition from the current color of the

property named in the PropertyName property to the color of the StopValue.

 Sets the PropertyName property of this color animation to be the string provided in the
APropertyName parameter. This string is the name of a property of type TColor associated with

the parent to animate. For instance, if the parent is a TRectangle, PropertyName could be set to

"Fill.Color" or "Stroke.Color". The value of this property will change from the current value

stored (if the StartFromCurrent property is "True ") in that property to the value stored in the

color animation StopValue property.

 Sets the StartFromCurrent property of this color animation to be True. This causes the

animation of the color to start with the color value that is currently stored in the Color property

associated with the parent. This could be a TRectangle.Fill.Color.

 Sets the StopValue property of this color animation to be the TColor provided by the NewValue
parameter. The color animation transitions from the current color value to this StopValue.

 Calls the Start to start the animation.

Custom Animations

Custom animation components can be also created by sub-classing TAnimation and implementing the

ProcessAnimation method. ProcessAnimation moves the value of the controlled property by one

increment.

ProcessAnimation is a protected method used in the implementation of a descendant class of a

TAnimation. ProcessAnimation should be called by the thread configured to process an animation for

each increment of time. The increment of time is platform-specific; a specific number of time

increments make up a delta time. The ProcessTick method takes a delta time as a parameter and calls

ProcessAnimation the required number of times.

Using Animations

FireMonkey provides many different types of built-in animations that modify the value of the selected

property over time. Use the following steps to build a project that uses several basic animation effects.

Step 1: Using TFloatAnimation to Change a Floating Property Value

In FireMonkey, any property that uses floating numbers can be modified using TFloatAnimation. So, let’s
change some values using animation effects.

 Create a new FireMonkey HD Application using either File > New > FireMonkey HD Application

– Delphi or File > Ne w > FireMonke y HD Application – C++Builder.

 Place a TRectangle component on the Form Designer. To do so, type rec in the search box on the

Tool Palette, and then double-click the TRectanglecomponent.

E-Learning Series: Getting Started with Windows and Mac Development

Page 35

 After you place a TRectangle component on the Form Designer, resize the rectangle to look

something like the picture above. In the Object Inspector you will see several properties that

have a film icon (). The film icon indicates that these component properties can be animated.

 The following are typical properties (depending on the component) that you can change
throughTFloatingAnimation:

o Height

o Position.X

o Position.Y

o RotationAngle

o RotationCenter.X

o RotationCenter.Y

o Scale.X

o Scale.Y

o StrokeThickne ss

o XRadious

o YRadious

o Width

http://docwiki.embarcadero.com/RADStudio/en/File:Select_TRectangle.png
http://docwiki.embarcadero.com/RADStudio/en/File:TRectangle_on_Form.png
http://docwiki.embarcadero.com/RADStudio/en/File:FilmIcon.png
http://docwiki.embarcadero.com/RADStudio/en/File:PropertiesForTRectangle.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 36

 To modi fy the value of a property, click the drop -down menu for the RotationAngle property,

and then select Create Ne w TFloatAnimation.

 Now the new TFloatAnimation component is created. You will see that, in the Structure pane,
FloatAnimation1 is defined as a child of Rectangle1. Note: Please keep in mind that the effect of

the animation-effect components applies to the parent component.

 The Object Inspector shows the properties for the FloatAnimation1 component. Change the

following properties:

o Duration = 5 - The amount of time (in seconds) to animate from the start value to the

stop value.

o Enabled True - The animation starts when the a pplication starts

o Loop True - Repeats the animation indefinitely.
o StopValue = 360 - Terminates the animation of this property when it reaches this value.

o Another important property, which is defined automatically, is PropertyName. In this

case, this property is set to RotationAngle; therefore this animation affects the value of

the RotationAngle property of its parent component.

http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Duration
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Enabled
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Loop
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Ani.TFloatAnimation.StopValue
http://docwiki.embarcadero.com/RADStudio/en/File:CreateNewFloatAnimation.png
http://docwiki.embarcadero.com/RADStudio/en/File:FloatAnimationAtStructure.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 37

 Execute the application. Now the rectangle component rotates on the form:

 You can animate any other numeric properties using the same steps.

Step 2: Changing the Color by Adding TColorAnimation

Next, you will apply a color animation to change the color of the rectangle, in addition to the rotation

described in Step 1.

 Select the TColorAnimation component from the Tool Palette. To do so, type anim in the search
box on the Tool Palette, and then double -click TColorAnimation:

http://docwiki.embarcadero.com/RADStudio/en/File:PropertiesOfFloatAnimation.png
http://docwiki.embarcadero.com/RADStudio/en/File:RectangleWithRotate.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 38

 TColorAnimation1 is defined as a child of the Form while FloatAnimation1 is defined as a child of

Rectangle1 (as discussed at Step 1). Drag-and-drop ColorAnimation1 onto Rectangle1. Now

ColorAnimation1 is defined as a child of Rectangle1, and therefore ColorAnimation1 affects

Rectangle1:

 The Object Inspector shows the properties for the TColorAnimation1 component. Change the

following properties:

o PropertyName = Fill.Color - Name of the property to animate.

o Enabled = True - The animation starts when the application starts.

o Duration = 3 - The amount of time (in seconds) to animate from the start value to the

stop value.

o Loop = True - Repeats the animation indefinitely.

o AutoReverse = True- Animates backward after animating forward.

o StartValue = White

o StopValue = Red - Terminates the animation of this property when it reaches this value .

http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Ani.TColorAnimation.PropertyName
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Enabled
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Duration
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Loop
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.AutoReverse
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Ani.TColorAnimation.StopValue
http://docwiki.embarcadero.com/RADStudio/en/File:SelectColorAnimation.png
http://docwiki.embarcadero.com/RADStudio/en/File:ColorAnimationAtStructure.png
http://docwiki.embarcadero.com/RADStudio/en/File:DnDColorAnimation.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 39

 Execute the application. Now the rectangle component rotates on the form and has its
fill.color property change from white to red:

Step 3: Changing an Image by Using TBitmapAnimation

The last step use s a bitmap animation with an image component.

 Create a new FireMonkey application, as in Step 1 of this tutorial.

 Place a TImage component (Image1) on the Form Designer.

 Place a TBitmapAnimation component on the Form Designer. Using the Structure View, set
this component (BitmapAnimation1) as a child of Image1:

http://docwiki.embarcadero.com/RADStudio/en/File:PropertiesOfColorAnimation.png
http://docwiki.embarcadero.com/RADStudio/en/File:RotateWithColor.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 40

 Set the properties of BitmapAnimation1 on the Object Inspector as follows:

o PropertyName= Bitmap - Name of the property to animate.

o Enabled = True - The animation starts when the application starts.

o Duration = 10 - The amount of time (in seconds) to animate from the start value to the

stop value.

o Loop = True = Repeats the animation indefinitely.

o AutoReverse = True - Animates backward after animating forward.

 Set the StartValue and StopValue Bitmap properties. These properties hold the picture as initial

image and final image. Click the “Edit…” property editor from the menu, and then select your

favorite pictures using the Bitmap Editor.

 Execute the application. Now the two pictures you chose are animated over time.

Additional Animation Examples for Delphi and C++

There are several additional animation code examples for Delphi and C++ in the Embarcadero DocWiki.

The FMXObjectAnimateFloat example shows how to call the FMX.Types.TFmxObject method

FMX.Types.AnimateFloat. Note that once called, you do not have access to the

FMX.Ani.TFloatAnimation instance that FMX.Types.AnimateFloat creates.

 http://docwiki.embarcadero.com/CodeExamples/en/FMXTFmxObjectAnimateFloat_(Delphi)

 http://docwiki.embarcadero.com/CodeExamples/en/FMXTFmxObjectAnimateFloat_(C%2B%2B)

The FMXObjectAnimateColor example shows how to call the TFmxObject method AnimateColor. Note

that once called, you do not have access to the TColorAnimation instance that AnimateColor creates.

 http://docwiki.embarcadero.com/CodeExamples/en/FMXTFmxObjectAnimateColor_(Delphi)

http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Ani.TBitmapAnimation.PropertyName
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Enabled
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Duration
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.Loop
http://docwiki.embarcadero.com/Libraries/XE2/en/FMX.Types.TAnimation.AutoReverse
http://docwiki.embarcadero.com/CodeExamples/en/FMXTFmxObjectAnimateFloat_(Delphi)
http://docwiki.embarcadero.com/CodeExamples/en/FMXTFmxObjectAnimateFloat_(C%2B%2B)
http://docwiki.embarcadero.com/CodeExamples/en/FMXTFmxObjectAnimateColor_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/File:BitmapAnimation.png
http://docwiki.embarcadero.com/RADStudio/en/File:EditBitmapAnimation.png

E-Learning Series: Getting Started with Windows and Mac Development

Page 41

 http://docwiki.embarcadero.com/CodeExamples/XE2/en/FMX TFmxObjectAnimateColor_(C%2B

%2B)

The AttachTAnimation example demonstrates how the AnimationType and Interpolation properties

affect the rate at which the value of a property changes under their control. This is illustrated by

controlling the X and Y of a TRectangle with TFloatAnimation instances.

 http://docwiki.embarcadero.com/CodeExamples/en/AttachTAnimation_(Delphi)

 http://docwiki.embarcadero.com/CodeExamples/XE2/en/FMX AttachTAnimation_(C%2B%2B)

The FMXTimerAnimation examples show how to move an image on a form, using three different

techniques. The first example uses a TTimer object. The last two projects use animations

(TFloatAnimation and TPathAnimation, respectively). All three have the same result: when th e user

presses the button, the image moves in a diamond shape around the button.

 http://docwiki.embarcadero.com/CodeExamples/en/FMXTimerAnimation_(Delphi)

 http://docwiki.embarcadero.com/CodeExamples/en/FMXTimerAnimation_(C%2B%2B)

AnimationDemo HD and 3D Samples

Example projects are included with RAD Studio that illustrates how to create animations for HD and 3D

Windows and Mac applications.

http://docwiki.embarcadero.com/CodeExamples/en/FMX.AnimationDemoHD_Sample

http://docwiki.embarcadero.com/CodeExamples/en/FMX.AnimationDemo3D_Sample

Image Effects and Animations for iOS

All of the information and examples covered in this lesson will also work using Fire Mo nkey for i OS. Start

your project with File > New > Other… > Delphi Projects > FireMonkey HD i OS Application or File > Ne w

> Other… > Delphi Projects > FireMonke y 3D iOS Application .

http://docwiki.embarcadero.com/CodeExamples/XE2/en/FMXTFmxObjectAnimateColor_(C%2B%2B)
http://docwiki.embarcadero.com/CodeExamples/XE2/en/FMXTFmxObjectAnimateColor_(C%2B%2B)
http://docwiki.embarcadero.com/CodeExamples/en/AttachTAnimation_(Delphi)
http://docwiki.embarcadero.com/CodeExamples/XE2/en/FMXAttachTAnimation_(C%2B%2B)
http://docwiki.embarcadero.com/CodeExamples/en/FMXTimerAnimation_(Delphi)
http://docwiki.embarcadero.com/CodeExamples/en/FMXTimerAnimation_(C%2B%2B)
http://docwiki.embarcadero.com/CodeExamples/en/FMX.AnimationDemoHD_Sample
http://docwiki.embarcadero.com/CodeExamples/en/FMX.AnimationDemo3D_Sample

E-Learning Series: Getting Started with Windows and Mac Development

Page 42

Follow the same steps outlined above to use Image Effects and Animati ons in your iOS applications.

Summary, Looking Forward, To Do Items, Resources, Q&A and the Quiz

In Lesson 8 you learned how to add dazzling image and animation effects to your Windows, Mac and iOS

(Delphi XE2 only) applications. You learned about the 50+ e ffects included with FireMonkey. You

learned how to use these effects to enhance the user experience in your applications.

In Lesson 9, you’ll learn how to put it all together, everything you’ve learned over the first 8 lessons, to

build multi-client, multi-platform and mult-tier applications.

In the meantime, here are some things to do, articles to read and videos to watch to enhance what you

learned in Lesson 8 and to prepare you for lesson 8.

To Do Items

Explore all of the image and animation effects components that are included with RAD Studio. Open,

explore and run the Animation HD and 3D examples programs that are included with RAD Studio.

Links to Additional Resources

E-Learning Series: Getting Started with Windows and Mac Development

Page 43

 Getting Started Course landing page -

http://www.embarcadero.com/firemonkey/firemonkey-e-learning-series
 FireMonkey Application Platform -

http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
 How to Create Your Own FireMonkey Image Effect by André Miertschink -

http://members.adug.org.au/2011/12/15/how-to-create-your-own-firemonkeyimage-

filtereffect-to-use-with-firemonkey/
 Rich HD and 3D Business Applications with FireMonkey (YouTube video) -

http://www.youtube.com/watch?v=80hfge8NwCE
 Introduction to FireMonkey Effects Delphi and C++ (YouTube video) -

http://edn.embarcadero.com/article/42104

Delphi:

 RAD Studio Delphi sample programs on SourceForge -
http://radstudiodemos.svn.sourceforge.net/viewvc/radstudiodemos/branches/RadStudio_XE2/

FireMonkey/

C++:

 RAD Studio C++ sample programs on SourceForge -

http://radstudiodemos.svn.sourceforge.net/viewvc/radstudiodemos/branches/RadStudio_XE2/

CPP/FireMonkey/

Pixel Shader:

 Writing HLSL Shaders in Direct3D 9 – http://msdn.microsoft.com/en-
us/library/windows/desktop/bb944006(v=VS.85).aspx

 DirectX Pixel Shader 2 – http://msdn.microsoft.com/en-

us/library/windows/desktop/bb219843(v=vs.85).aspx

 Microsoft DirectX SDK – http://go.microsoft.com/fwlink/?LinkId=150942

 NVIDIA’s Cg Toolkit – http://developer.nvidia.com/cg-toolkit

 The Open GL ES Shading Language –

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

Q&A:

Here are some of the answers for the questions I’ve received (so far) for this lesson. I will continue to

update this Course Book during and after course.

http://www.embarcadero.com/firemonkey/firemonkey-e-learning-series
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://members.adug.org.au/2011/12/15/how-to-create-your-own-firemonkeyimage-filtereffect-to-use-with-firemonkey/
http://members.adug.org.au/2011/12/15/how-to-create-your-own-firemonkeyimage-filtereffect-to-use-with-firemonkey/
http://www.youtube.com/watch?v=80hfge8NwCE
http://edn.embarcadero.com/article/42104
http://radstudiodemos.svn.sourceforge.net/viewvc/radstudiodemos/branches/RadStudio_XE2/FireMonkey/
http://radstudiodemos.svn.sourceforge.net/viewvc/radstudiodemos/branches/RadStudio_XE2/FireMonkey/
http://radstudiodemos.svn.sourceforge.net/viewvc/radstudiodemos/branches/RadStudio_XE2/CPP/FireMonkey/
http://radstudiodemos.svn.sourceforge.net/viewvc/radstudiodemos/branches/RadStudio_XE2/CPP/FireMonkey/
http://msdn.microsoft.com/en-us/library/windows/desktop/bb944006(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb944006(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb219843(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb219843(v=vs.85).aspx
http://go.microsoft.com/fwlink/?LinkId=150942
http://developer.nvidia.com/cg-toolkit
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

E-Learning Series: Getting Started with Windows and Mac Development

Page 44

Q:

 A:

If you have any additional questions – send me an email - davidi@embarcadero.com

Self Check Quiz

1. Which of the following image e ffects is not included with FireMonkey?

a) TSepiaEffect

b) TToonEffect

c) TDissolveTransitionEffect

d) TSeasonalEffect

e) TFillEffect

2. Which of the following animation effects is not included with FireMonkey?

a) TFloatAnimation

b) TFilmAnimation

c) TColorAnimation

d) TPathAnimation

3. Image and Animation effects can be used on computers that don’t have a GP U?

a) True

b) False

Answers to the Self Check Quiz:

1d, 2b, 3b

mailto:davidi@embarcadero.com

