Virtual TreeView tutorial

Virtual TreeView Tutorial

The versitale Delphi component

by Philipp Frenzel

Contents 3

Table of Contents

Part |

Part Il

1
2

Part IlI

a b~ W0ODN

Part IV

Part V

1
2

Part VI

A W N

Part VII

© 00 N o o B~ W NP

=Y
o

Foreword

Installation 6
The first node 8
React 0N NOAES DY CHCKS .oooiiiiiiii e 9
Insert nodes in a SPecCific [0CALIONocuviiii i 10
Insert node data 12
DEfiNg the DAta TYP@ ...eeeeiiiiieiiiiete ettt e e ettt et e e e e e e et e aeeeaaaaeaeas 12
TS = T o IR Y=o - L SRR 12
REAA QUL the TALAeeiiiiiiiiii ittt e e e s annaaeae s 14
A ItHE DIt OF tNEOTY oo e a e e 14
REIEASING The TALAeeeiiiiiiee it e e e e e e e aeeeaaa e e e an 14
The node caption 16
The ONGELTEXE EVENT ...ttt e et e e e e e e e e s st bbb e e e e e e e e e s e annbbeeeeeas 16
Working with Coloumns 18
NOAES AN COIUMNS oottt st e e s sabe e e e s bbb e e e s annaneee s 19
General HEader BVENTS ...ttt st e s e s et ee e e e e nbeas 20
Adding a object to the node 22
(= T Y= =T 0 o =T o SR 22
T Y= o Y=o] o] = o3 R 22
REAM The ODJECT ettt ettt e e e e e e e e e anb e e aeeaaaaeaeas 24
== L] o o [T P TP 24
Other Commands 26
[oo od U E=T=To I T Lo = T USSP 26
Retrieve the NOAE TEVEL ... et 26
(D] 1=) (oI W Lo Lo [TP 26
Delete all the children of @ N0AEoooiiiiiiii e 27
I = o To 1T LT T 1o)= W 4 o o L= S 27
Expand / Collapse all NOAESuiiiiiiiiiiee et e e e e 28
Expand / Collapse a specified NOAE ..o 28
Does a NOde have ChIlATENT? ... 28
DeElete @ll NOGES ...ttt ettt e s st e e s ebb e e e sbbb e e s annaneae s 28
DetermMing the PArENt ...ttt e e e e e e e e s bbb e eeeaaaaeaeas 29

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

4 Virtual TreeView tutorial

11 Nodes with different heights ... e 29

D2 @] o 1ot fl o 1= = U o = PSSR 29

Part VIII Sorting nodes 31
AN o = T 01 o] L TP PTUT PRI 31

Part IX Use icons and images 34
1 Choose your oWn BackgrOUNduuuiiiiiieeiis e s s r e e e e s e e e e e e e s nnnnaeeeees 35

2 FONES fOr the NOTE oot e e e e e e ee s 35

Part X Save and Load 38
S Y- Y o Yo PO 39

Y2 I o T- o [o Vo [Rru TP PR TP PP 40

3 Make editing POSSIDIE . a e 40
Index 0

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Installation

Virtual TreeView tutorial

1

Installation

Autor: Philipp Frenzel
Translated by: Koos de Graaf

disclaimer by Koos:

| do not know Philip Frenzel or Mike Lischke and | did not asked them permission to translate this tutorial.

Theoriginal text isall by Philipp Frenzel, | tried to stay as close to his word but sometimes | have elaborated a bit or changed the
structure of the sentence.

| did the best | could translating it but sometimes I'm not sure. In those cases | left my best guess and the original text for you.

| hope you will enjoy using, | know many people where waiting for atrandation.

Good luck,

Koos

In your daily computer business you will often run into components that display their
information in atree-top or directory structure. The Windows explorer for example
displays hard disks, files and foldersin this manner. In Delphi there is a component that
controls this Windows-Control: TTreeview. For smaller tree-top structures this component
is adequate and up to the task, but somewhere along the road there will come a point when
you need more: columns, better performance, higher flexibility, Windows XP styles,
Unicode support, etc.

It istimeto find yourself anew component that has those functionalities, like for instance
the Virtua TreeView component of Mike Lischke. This component is an Open Source
project. Y ou can download the official release from Mike's Homepage. Y ou will also find
more information about this incredible component. For help and support Mike
recommends its homepage, the VT Newsgroup. Many possibilities of the tree are being
shown in the demo's, which you can also find on his homepage. Visit the picturegallery to
get an impression of al the possibilities of the Virtual Trees. The components do not need
runtimes, special DLL's or other external tools. The source code is directly linked in the
EXE data

After the download, which is about a2.2MB archive (except for the Controls, the complex
HTML-help file en the demo source code), the component must be installed. Y ou can do
this by using the packages or the Virtual TreesReg,pas, which also contains the register
procedure. Make sure the search path will not contain an old version of the components!
After the installation you will find tree componentsin the "Virtual Controls' tab:

Virtual StringTree (VST), Virtual DrawTree and the newest HeaderPopmenu. The
important component for usisthe VST.

Notice: The component can be used from Delphi version 4.

It will beimpossible to describe al functions and possibilitiesin the Virtual Trees. It is
therefore helpful to have at least same experience with the Virtua Tree component.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

http://www.lischke-online.de/VirtualTreeview/VT.php
http://www.lischke-online.de/VirtualTreeview/VTGallery.php

The first node

Virtual TreeView tutorial

The first node

Theunitsof aTree are called Nodes. Thefirst level of aTreeistheroot level. Sub nodes
are called Children or Child Nodes.

The creation of anew nodeisvery smple:

procedure TFornl. Buttonld i ck(Sender: TObject);
begi n

VST. AddChi I d(ni l);
end;

The Method will transfer the parameter nil, because this node isaroot node. Thisis where
you will assign the parent node. The node will then be attached as a child of that node.

Now we will create a new node, which has a new node as a child.

procedure TForm1.Button1Click(Sender: TObject);
var
Node: PVirtualNode;
begin
Node:=V ST.AddChild(nil);
VST.AddChild(Node);
end;

The complete tree should ook like this (after one call to this function).
=

- Mode
‘- Mode

| Modes hinzufligen i

Explanations:
Node := VST.AddChild(nil);

The Node is now shown from the root node. Y ou will need the memory address, so you
can add 'Children’ later. We can provide this address by using the Node variable as
parameter in the second call to the function.

PVirtualNode is a pointer to the record TVirtualNode, which will hold some information
of the focussed Node.

Another possibility, for instance to immediately create 100 root nodes, is to set the
property RootNodeCount of the Trees to 100. From that moment on all the Nodes will
have the caption 'Node'. Thisis normal. How you can change this, | will explain later.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

The first node 9

2.1

React on nodes by clicks

Now one click should activate an appropriate action. First we will add a couple of Nodes:

procedure TFornl. Buttonld i ck(Sender: TObject);

var
Node: PVirtual Node;
I : Integer;

begi n

Node: =VST. AddChi | d(ni |);
for 1:=1 to 100 do
Node: =VST. AddChi | d(Node) ;
end;

In this example 101 nodes are being created on 100 levels. When anode is clicked the
program should display on which level the node has been created. So we will write the
following in the OnClick event of the tree:

procedure TForml. VSTC i ck(Sender: TObject);
var
Node: PVirtual Node;
begin
Node: =VST. FocusedNode;
i f not Assigned(Node) then
Exit;

Shownessage(| nt ToStr (VST. Get NodeLevel (Node))) ;
end;

The property of FocusedNode contains a pointer the node selected at that time. If no node
Is selected, the property will be nil.

The method GetNodel evel of the tree will return the level the node is on. As parameter
you must enter a pointer to the node of which the level will be returned.

Y ou havejust learned that you can created a high number of root nodes by setting the
property RootNodeCount. With the help of the property ChildCount of the tree, you can
also set the number of children:

procedure TFornl. Buttonld i ck(Sender: TObject);
var
Node: PVirtual Node;
I : Integer;
begi n
for I:=1 to 100 do
begi n
Node: =VST. AddChi I d(ni |');
VST. Chi | dCount [Node] : =10;
end;
end;

In this case every one of the 100 root nodes will 'receive’ 10 children. When using this
way to create the root nodes and the child nodes you must realize you will not always have
the opportunity the assign an object to a child node. More about that later...

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

10

Virtual TreeView tutorial

2.2

Insert nodes in a specific location

With the help of the method InsertNode it is possible to insert a node in a specific
location. The method will need to parameters. First the address of the focussed node in the

form of PVirtualNode and the insert mode:

Node : = vst.Insert Node(vst.FocusedNode, am nsertAfter);

In this example the node is inserted after the focussed node. Would the parameter be
‘amlnsertBefore, the node would be inserted before the focussed node.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Insert node data

12

Virtual TreeView tutorial

3.1

3.2

Insert node data

To this moment inserting a node was relatively easy. From thismoment on it will be a
little more complex. Not only will we add a note but also all the data we want to attach to
it.

Define the Data type

Y ou can add your data quite nicely in the form of arecord. For that purpose we will define
arecord, which could look abit like this:

type
PTreeData = ~TTreeDat a;
TTreeData = record

FCaption: String;
FCol um1: String;
end;

The pointer PTreeDatawill point to the record. Why we will use arecord in thisway, |
will explain later. Y ou can add your own variables to the record.

Inserting the data
The next lines are meant to provide an insight in the TreeView component and don't
necessarily are part of the source code.

A nodeisinserted as usual. The address of the node is stored in avariable locally:

var

Node: PVirt ual Node;
begi n

Node: =VST. AddChi | d(ni |);
end;

By now this should look familiar. In the next piece of code you will retrieve the position
of the object (the last object will until then be nil). We achieve that like this:

Data : = VST. Get NodeDat a(Node) ;

Data must by of the type PTreeData. PTreeData points once again to the record TTreeData
(so Data:PTreeData;). Now we will fill the record with values:

Dat a”. FCapt i on :
Dat a”. FCol utm1 :

"Hal | 0';
"Weiterer Vert';

The record has now been filled with data. This datais now connected to the node. But
there are still one or two traps we will have to avoid. The size of the structure must be
known to the tree. Y ou can assign it by using:

VST. NodeDat aSi ze : = Si zeOf (TTr eeDat a) ;

Y ou will normally only assign this once. Only if you radically change the build-up of your
data (and thereby the size) you will have to assign the NodeDataSize again. Alternatively
you can use the event OnGetNodeDataSize, which will be fired every timethe datasizeis
been asked for.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Insert node data 13

The complete procedure of inserting the data in a node looks like this. | put the actual
inserting in afunction:

functi on AddVSTStructure(AVST: TCustonVirtual StringTree; ANode:
PVi r t ual Node;
ARecord: TTreeData): PVirtual Node;
var
Dat a: PTreeDat a;
begi n
Resul t : =AVST. AddChi | d(ANode) ;
Dat a: =AVST. Get NodeDat a(Resul t) ;
Avst . Val i dat eNode(Resul t, Fal se);
Dat a”. FCapt i on: =ARecor d. FCapt i on;
end;

procedure TFornl. Button3C i ck(Sender: TObject);
var
I : Integer;
TreeDat a: TTr eeDat a;
begi n
VST. NodeDat aSi ze: =Si zeOf (TTr eeDat a) ;
VST. Begi nUpdat e;
for 1:=0 to 100 do
begi n
Tr eeDat a. FCapti on: =" Node- Nunmer: ' +IntToStr(l);
AddVSTSt ruct ure(VST, ni |, TreeDat a) ;
end;
VST. EndUpdat e;
end;

In this example 100 nodes and their data are inserted.

The function AddV ST Structure has three parameters. Thefirst isthe tree, in which the
node will be inserted. Then secondly the parent-node (if aroot node must be added, this
parameter should be set to nil) and the third parameter is the record. As result the function
will give back - precisely as AddChild - apointer to the inserted node.

The method ValidateNode will initialise the nodes. Thisisimportant at the freeing of the
data, because otherwise the data will be released into the memory. Thefirst parameter
must be the node you want to initialise, the second if you also want to initialiseits
children. We will not need thisin our case.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

14

Virtual TreeView tutorial

3.3

3.4

3.5

Read out the data

OK. We now have inserted the data, but don't know how to read out the information in it.
Hereis an example.

procedure TFornl. VSTA i ck(Sender: TQbject);
var

Node: PVirt ual Node;

Dat a: PTreeDat a;
begi n

Node: =VST. FocusedNode;

if not Assigned(Node) then

Exit;

Dat a: =VST. Get NodeDat a(Node) ;
Shownessage(Dat a. FCapt i on) ;
end;

One part you will recognise from the last chapter. It will set the focused node in the
OnClick-Event of the tree.

New are the two last parts. The variable Datais again a pointer to the record TTreeDatain
the form of PTreedata. With the function GetNodeData this variable is set to the position
of the record of the node that you use as parameter (in this case Node). Using
Showmessage we will show the value FCaption.

A little bit of theory

When you insert a node the memory will look abit like this:

| Internal data | User data |

First the internal node information is read, then the user data. Because the user datais
dynamic, you must specify the size beforehand. As said we can do this with the property
NodeDataSize. The function GetNodeData will calculate the approximated start-value of
the user data.

Releasing the data

Earlier | have discussed releasing the data. The data occupies areserved space in the
memory that must be freed after exiting. This does not happen automatically, so it must
be done manually. The event OnFreeNode is the right way to do it:

pr ocedur e

TFor mlL. vst Fr eeNode(Sender :

TBaseVi rtual Tree; Node:

PVi r t ual Node) ;

var
Dat a: PTr eeDat a;

begin
Dat a: =VST. Get NodeDat a(Node) ;
i f Assigned(Data) then

Dat a. FCapti on: ="' ;
end;

By using GetNodeData we are getting the memory address of the data. With stringsitis
enough to set the variable to an empty string.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

The node caption

16

Virtual TreeView tutorial

4.1

The node caption

With the normal Treeview component it was simple: There was a direct routine
(AddText), wich you could use immediately at the moment you inserted anode. It is not
so simple with Virtual Tree. But in return the inserting process is much faster.

This chapter islarger leaning on the knowledge you would have gained from the last
chapter. A record is once again added to the node. The variable FCaption in the record
will be used for the caption.

Now we must place before and after the FOR-statement aV ST.BeginUpdate and (after) a
V ST.EndUpdate. With this you will signify that the tree is being edited and Windows will
suppress the repainting of the tree.

The OnGetText event

This event will be called at the moment a node is painted. Therefore thisis the place to set
the caption (with the reference parameter Cell Text).

In our example thiswould look like this:

procedure TForml. VSTGet Text (Sender: TBaseVirt ual Tree; Node:
PVi rt ual Node;
Col um: | nteger; TextType: TVSTText Type; var Cell Text: WdeString);
var
Dat a: PTr eeDat a;
begin
Dat a: =VST. Get NodeDat a(Node) ;

Cel | Text := Data”. FCapti on;
end;

Note: In the older versions the parameter Cell Text was called Text (also still in some
placesin the manual, | think...)

The caption of every node will then have the value, which isin the variable FCaption of
the record (it should be a bit like: Node-Nummer: xxx). If the node can not retrieve data,
the program will crash.

Y ou should not make big or complex calculations in this event. Just the retrieving of user
data.
Thi

his iswhere you can download the example program of the last chapter.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

http://www.dsdt.info/tutorials/virtualtreeview/kap4.zip

Working with Coloumns

18

Virtual TreeView tutorial

Working with Coloumns

Another more clarifying difference with the normal TreeView component is the possibility
to create atree-top structure with the help of columns.

Choose the property 'Header' in the object-inspector. Then set the different columns by
using the property-editor. In the options menu of the header property you must activate
'hoVisible'.

S virtualStringTreel.Columns & x|
RN

- Erste Spalte

1 - Zweite Spalte

Of course you can set the caption property of a header with the object-inspector, but there
will come atime you will need to set at run-time:
procedure TFornl. Button2C i ck(Sender: TObject);
begi n
VST. Header . Col ums[0] . Text: =' Erste Spalte';
end;

Thiswill set the caption of thefirst column to 'Erste Spalte' (First column in German).
With the property width you can set the width of the column. To make a column invisible
use the following code:

procedure TFornl. Button2C i ck(Sender: TObject);
begi n
VST. Header . Col unms|[0] . Opti ons: =VST. Header . Col unms[0] . Opti ons -
[coVisible];
end;

The column will be visible again when you change the - into a'+'.

By default the column act like buttons. Test it yourself if you have compiled the program
and click with your mouse on the column. With that action, two events can be called:
OnColumnClick or OnColumnDblClick. The will be called with asimple click, the other
with adouble-click. The procedure header can look like this:

procedure TFornl. vst Col umdCl i ck(Sender: TBaseVirtual Tree; Col um:
| nt eger;
Shift: TShiftState);

The parameter Column has the Column index, of the column that was clicked.

If you want the headers to have a static caption, like with StringGrid you must remove the
coAllowclick option out of the header.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Working with Coloumns 19

51 Nodes and Columns

Now you can attach more column values to anode. We have granted the record TTreedata
from chapter 3 another variable.

In the procedure, that is added to the tree of the node, we must fill these variables with
valuesthat are also are attached to the data-record in the function AddV ST Structure.

Note: This procedure can be taken directly from the old example.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

20

Virtual TreeView tutorial

5.2

We still have to modify the OnGetText-event. If you look at the parameter list of the event
procedure, you will also see the parameter '‘Column’ which is the column index.

procedure TFornl. VSTGet Text (Sender: TBaseVirtual Tree; Node:
PVi r t ual Node;
Col um: I nteger; TextType: TVSTText Type; var Text: WdeString);
var
Dat a: PTreeDat a;
begi n
Dat a: =VST. Get NodeDat a(Node) ;

case Col um of

0: Text := Data.FCaption;
1: Text := Data.FCol umil;
end;

end;

The case statement is needed. Just like with many elements the count starts at 0. The first
columnisalso 0. If no column is defined (which is the default) the parameter will be -1.
There has to be at least one column defined or we will get in trouble with selecting the
node in time.

Surely we must not forget to free the data. Use the procedure in chapter 3/ 121,
General Header events

On the events tab of the object-inspector are multiple events that are connected to the
header. They all start with OnHeader... . A short note on those events:

OnHeaderClick & OnHeaderDblClick
These events are called when the user (double)clicks a certain header.
OnHeaderDragged & OnHeaderDragging
The Virtua Trees have multiple methods and elements to support drag & drop.
Y ou can for instance change the way the header (splitters, columns, rows or
headers?) are ordered. OnHeaderDragging is called before a Drag event is
completed (which can then be suppressed by the parameter Allowed) and
OnHeaderDragging is called after the Drop action. If you want to disable drag &
drop from the get-go, use the 'hoDrag' value of the header property of the tree.
OnHeaderDraw
If the header is painted, this event will be called.
OnHeaderM ouseDown, OnHeaderM ouseMove & OnHeaderMouseUp
These events share a strong resemblance with OnMouseDown, OnMouseMove
and OnMouseUp, who are al descendants of TComponent.
OnMouseHeaderDown is called when the user clicks on an area of the header,
OnHeaderM ouseM ove when the mouse moves in an area of the header and
OnHeaderM ouseUp, when the mouse button is released (in the header area?).

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Adding a object to the node

22

Virtual TreeView tutorial

6.1

6.2

Adding a object to the node

To add a object to a node we must act like we would if we are adding data to a node. One
variable of the type TObject in the record will simply point to our object. It's that simple.

Define an object

First we must define and declare our object. As object we will use aclass.

type
TTr eeDat ad ass = cl ass
private
FTestStrl: String;
FTestint: Integer;
publ i shed
property TestStrl: String read FTestStrl wite FTestStrl
property Testlnt: Integer read FTestlnt write FTestlnt;
end;

If you want you can use many types as properties. It is the same as defining a component.
Because it isjust anormal class, you will have all the possibilities of anormal class at
your disposal. Not only can you declare properties, but you can also integrate functions
and proceduresin the class. This class has two properties 'TestStrl' and an integer property
TestInt'.

For this type we will declare the next record:

type
PTreeData = ~TTreeDat a;
TTreeData = record
Foj ect : Tbj ect;
end;

After thisthe pointer PTreeDatawill point to the record. Why we are using arecord here, |
will explain in the next chapter. By now you must suspect that the variable 'FObject’ of the
record will later contain the data of our declared object!

Insert the object

The following lines are mainly used to provided same insight and are not always part of
the source code.

Add anode like we would normally do. The address of the node will be held in alocal
variable. Y ou should knows this by now, | told you in chapter 3.

var

Node: PVirtual Node;
begin

Node: =VST. AddChi | d(ni |);

Dat a: =VST. Get NodeDat a(Node) ;
end;

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Adding a object to the node 23

Datamust in this case be aPTreeDatatype. PTreeDatawill point at the class TTreeData
(so Data: PTreeData;). Now we will assign a new object to the variable FObject:

Dat a®. FObj ect : =Tr eeDat adl ass;

TreeDataClassisin this casein instant of the class TTreeDataClass (so TreeDataClass:
TTreeDataClass).
The Object should now be assigned.

The complete procedure to add a node with an object looks like this. The actual adding
has been put into a function:

function AddVSTObj ect (AVST: TCustonVirtual StringTree; ANode:
PVi rt ual Node;
AQbj ect: TCObject): PVirtual Node;
var
Dat a: PTr eeDat a;
begin
Resul t : =AVST. AddChi | d(ANode) ;
AVST. Val i dat eNode(Resul t, Fal se) ;
Dat a: =AVST. Get NodeDat a(Resul t) ;
Dat a®. FObj ect : =Ahj ect ;
end;

procedure TFornl. ButtonlC ick(Sender: TObject);
var
I: Integer;
TreeObj ect: TTreeDat ad ass;
begi n
VST. NodeDat aSi ze: =Si zeOf (TTr eeDat a) ;
for 1:=1 to 100 do
begin
TreeObj ect : =TTr eeDat aCl ass. Cr eat €;
try
TreeObj ect. Test Str1: =" Node- Nunmer: '+l ntToStr(1);;
TreeObj ect . Test | nt : =Random(1000) ;
AddVSTbj ect (VST, ni |, Treehj ect) ;
except
TreeObj ect . Free;
end;
end;
end;

In this example 100 nodes + objects are added. The object has to be created every time.

Y ou may wonder why the object is freed in aexcept-block. Thereisavery smple reason
why. The object will exist the entire time and not be destroyed after the procedure has
finished. We will worry about freeing the object later. The object has to be freed manually
when an error has occurred during the adding of anode (for instance, out of memory).

The function AddV STODbject awaits 3 parameter. Firstly the tree, to which a node will be
added. Then the as second parameter, the parent node (if aroot node hasto be added, this
parameter must be nil) and as third parameter the object. As Result the function - like
AddChild - will point to the added node.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

24

Virtual TreeView tutorial

6.3

6.4

Read the object

Great. Now that we have added an object, but we don't know how we can read it out. Here
isan example.

procedure TFornl. VSTA i ck(Sender: TQbject);
var

Node: PVirtual Node;

Dat a: PTr eeDat a;
begi n

Node: =VST. FocusedNode;

if not Assigned(Node) then

Exit;

Dat a: =VST. Get NodeDat a(Node) ;
Shownessage(TTr eeDat aCl ass(Dat a. FCbj ect) . Test Str 1) ;
end;

One part of the procedure you will recognise from the last chapter. The focused node is
searched for in the tree.

Thetwo last parts are new. The variable Datais once again a pointer to the TTreeData
classin the form (or disguise) of PTreeData. With the function Get NodeData the position
of the object of the selected node is retrieved. By typecasting the classis accessed and the
contains of property TestStr is shown in Showmessage.

So adding an object barely differs from adding normal data.
Releasing

Like the data we must also release the object and set it's pointersto nil. The tree has
prepared the event OnFreeNode for these cases, which will be called when the node is
released. Although the node is released, the datawill not be released automatically. We
will need to do it by code.

procedure TFornl. vst FreeNode(Sender: TBaseVirtual Tree; Node:
PVi r t ual Node) ;
var

Dat a: PTreeDat a;
begi n

Dat a: =VST. Get NodeDat a(Node) ;

if not Assigned(Data) then

exit;

Dat a. FObj ect . Fr ee;
end;

An example of this chapter can be downloaded here.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

http://www.dsdt.info/tutorials/virtualtreeview/kap6.zip

Other Commands

26

Virtual TreeView tutorial

7.1

7.2

7.3

Other Commands

In onetutorial you can't discuss every function of Virtual TreeView. In this chapter | will
however talk about the methods and functions that are the most important and most used.
People transferring from the TTreeview component will soon find out that the commands
that are available in the TTreeNode object are dso available in the Virtual Trees. It isjust
that most of the methods are not available in the node but in the tree.

Foccused node

This command is already used afew timesin thistutorial.

procedure TForml. VSTC i ck(Sender: TObject);
var

Node: PVirt ual Node;
begi n

Node: =VST. FocusedNode;

i f not Assigned(Node) then

Exit;

end;

The important method is the FocusedNode method. Becauseit isusually in the
OnClick-event of thetree, it is of course possible that the user will click on an areawith
no node. To prohibit a crash we need the If-statement. The procedure is ended when there
no node selected.

Retrieve the node level

The function GetNodeL evel will return the level of anode. The highest level is0. As
parameter a node of the PVirtualNode type must be given.

VST. Get NodeLevel (Node) ;
Delete a node

Until this moment we have only added nodes. But somewhere along the line you will have
to delete anode. Y ou can do this by using the method DeleteNode, which will need the
node of the PVirtual type.

VST. Del et eNode(Node) ;

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Other Commands 27

7.4

7.5

Delete all the children of a node

In our example we will usethistree:

Nodel

__Node2
||_Node3
I }_Nodezl
||_Node5

__Node6

Node7

__Node8
||_Node9

__Nodel0

Now we would like to delete all the children of node 2. The effected need would be node
3, node 4 and node 5. Thisis how you will delete the nodes:

VST. Del et eChi | dr en(Node) ;

Again the node must be a PVirtual type and point to node 2.
The position of a node

The method Absolutelndex will return the Index of anode. The nodes are globally
sequentially numbered from top to bottom.
Y ou can see the function of Absolutelndex really well when you try this next example:

procedure TForml. VSTGet Text (Sender: TBaseVirtual Tree; Node:
PVi rt ual Node;
Col um: | nteger; TextType: TVSTText Type; var Text: WdeString);
begin
Text : =I nt ToSt r (VST. Absol ut el ndex(Node)) ;
end;

Just insert atree structure by using AddChild and write the other linesin the
OnGetText-event. The method Absolutelndex will require a node of the PVirtualNode

type.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

28

Virtual TreeView tutorial

7.6

7.7

7.8

7.9

Expand / Collapse all nodes

TVirtual TreeView has provided two methods which will execute these actions. The try
this, first insert a couple of nodes.

VST. Ful | Expand;

The method FullExpand will expand all the nodes. On the actual expanding the
OnExpanding-event is called for each node, in which you can, viathe parameter Allowed,
decide isthe will be expanded. After that (if you let the node expand) the event
OnExpanded will follow.

VST. Ful | Col | apse;

The method FullCollapse will collapse all the nodes. Also in this case two events are
called for each node, OnCollapsing (before) and OnCollapsed (after).

Expand / Collapse a specified node

With the help of the property Expanded of the tree, you can expand a specified node.

VST. Expanded[Node] : =Tr ue;

Between the square bracketsis avariable of the PVirtualNode type. Is the property set to
true, the node is expanded, if it isset to falseit is collapsed. Also in this case the two
events On...ing and On...ed will be called, where'..." will be the applicable action (for
example OnExpanding).

Does a node have children?
The tree property HasChildren will tell you if anode has children or not.

i f VST. HasChi | dren[Node] then
Cl ose;

In the square brackets is once again our variable of the PVirtualNode type. Is the property
set to true, the node has children, otherwise it will be set to false.

Delete all Nodes

Y ou can do this using the method Clear:

VST. d ear;

To speed up the process you should deactivate the repainting of the control with
V ST.BeginUpdate and reactivate it later with VST.EndUpdate.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Other Commands 29

7.10 Determine the parent

Every node (PVirtualNode) has the property parent. This property points to the parent of
the node. The parent property of aroot-node will point to the tree. To differentiate a
root-node from a normal node you can use the following:

var
Node: PVirtual Node;
begi n
i f not Assigned(vst.FocusedNode) then
exit;

Node: =vst . FocusedNode;
whil e vst. Get NodelLevel (Node) >0 do
Node: =Node. Par ent ;
end;

The variable node will point exclusively to the root-node of a selected node.
7.11 Nodes with different heights

By using the property NodeHeight you will set the height of a node. The selected node
must be used as Index. In this example the height is set in the OnlnitNode event.

procedure TMai nForm vst| nit Node(Sender: TBaseVirtual Tree;
Par ent Node, Node: PVirtual Node;
var Initial States: TVirtual Nodel nit States);

begi n
vst . NodeHei ght [Node] : =Random(10) +15;

end;

Y ou might have noticed that the record node has a variable NodeHeight. Nevertheless
don't use this variable to set the height, but use the code in this example.

7.12 Object Hierarchie

The classes of the tree have the following hierarchy:

e TCustomControl
o TBaseVirtual Tree
= TCustomVirtualDrawTree
<+ TVirtual DrawTree
= TCustomVirtual StringTree
s TVirtua StringTree

By rule the Sender parameter in the event-handler of the TBaseVirtual Tree type. The same
handler can then be used for the normal TVirtua StringTree and for the
TVirtualDrawTree.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Sorting nodes

Sorting nodes 31

8 Sorting nodes

The tree makes the sorting of nodes very simple. By using the method SortTree the treeis
sorted. A call to this method could look like this:

vst. Sort Tree(0, sdAscendi ng, True);

The first parameter is the column, that will be sorted. The second parameter determines
the sort orientation, sdAscending will set it to sort ascending (A -> Z), sdDescending will
set it to sort descending (Z -> A). The third parameter is optional and is set to true as
default.

To ensure the sorting procedure will finish successfully, a comparing procedure must be
implemented. That iswhy the tree will have the OnCompareNodes event:

procedure TFornl. vst Conpar eNodes(Sender: TBaseVirtual Tree; Nodel,
Node2: PVirtual Node; Col umm: Integer; var Result: Integer);

Nodel and Node2 will point to the nodes that will be compared. Column has the value of
the column (and the reference parameter will transfer the way how to handleit?)

(I am not sure about the tranglation and what it means so | will leave the original text
here.)

"Bei Nodel und Node2 handelt es sich um Zeiger auf die zu vergleichenden Nodes.
Column hat den Wert der Spalte und dem Referenzparamter wird die
Handlungsanwei sung Ubergeben.”

(If nodel should stand in front of node2, the result must be smaller then 0.) If both values
areidentical, the result must be set to 0, and in case Node2 is bigger then nodel the result
will beavalue> 1.

(I am again not sure about the tranglation and what it means so | will leave the original
text here.)

Soll Nodel vor Node2 stehen, muss Result einen Wert kleiner als 0 haben. Sind beide
Werte identisch muss Result auf 0 gesetzt werden und falls Node2 grofer al's Nodel ist,
bekommt Result einen Wert >1.

8.1 An Example

First we will insert afew nodes to the tree and attach the next record:

PTreeData = ~TTreeDat a;

TTr eeDat a record
TestStr: String;
end;

The variable TestStr is our compare variable, which we will use also as the caption of the
node. How we will do this should be clear because of the earlier chapters.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

32

Virtual TreeView tutorial

Set the event-handler for the OnCompare-event en fill it with the following source code:

procedure TFornl. vst Conpar eNodes(Sender: TBaseVirtual Tree; Nodel,
Node2: PVirtual Node; Columm: Integer; var Result: |nteger);
var
Dat al: PTreeDat a;
Dat a2: PTreeDat a;
begi n
Dat al: =vst . Get NodeDat a(Nodel) ;
Dat a2: =vst . Get NodeDat a(Node?2) ;

if (not Assigned(Datal)) or (not Assigned(Data2)) then

Resul t: =0
el se
Resul t : =Conpar eText (Dat al. Test Str, Data2. TestStr);
end;

What is happening here? First the data, of the two nodes that have to be compared, is
retrieved. Thisis done by the method GetNodeData. We need this data, to get our other
compare variable Teststr. The if-statement will test if the datais available. If it isnot the
program will crash sooner or later.

The last line isimportant. The routine CompareT ext compares two strings and
conveniently returns the right variables (>0, when the first value is bigger then the second;
0, if both values areidentical, and < 0 in al the other cases). The routine requires two
strings. In our case Datal.TestStr (of the first node) and Data2. TestStr (of the second
node).

Now we have to give the tree the command to sort its nodes. We will do this by the
routine SortTree. The column that was clicked on is set in the parameter Column, which
will hold the Index-number of the column. So you could also use a case-statement to react
on every column. In our example the strings TestStr are always compared, no matter what
column you clicked on.

A complete example is downloaded here.

Often columns are sorted by clicking on them. To realise that alittle modification to the
OnHeaderClick-event has to be made:
procedure TMai nFor m vst Thr eadsHeader Cl i ck(Sender: TVTHeader ;
Col um: TCol uml ndex; Button: TMuseButton; Shift: TShiftState; X
Y: Integer);
begin
vst. Sort Tr ee(Col um, Sender . Sort Di r ecti on, True) ;
i f Sender.SortDirecti on=sdAscendi ng t hen
Sender. Sort Di recti on: =sdDescendi ng
el se
Sender . Sort Di rect i on: =sdAscendi ng
end;

The property SortDirection of the header line determines the sorting direction, which most
be toggled on every click.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

http://www.dsdt.info/tutorials/virtualtreeview/kap8.zip

Use icons and images

34

Virtual TreeView tutorial

Useicons and images

To make a node stand out, you can place an small icon next to it. The image that has to be
shown must be loaded in an ImageL.ist. This can be done in design-time. Now the image
list must be attached to the tree, do this by using the property Images and pick thelist.

The event OnGetlmagel ndex will be handling the showing of the icons:

procedure TFor ml. vst Get | magel ndex(Sender: TBaseVi rtual Tr ee;
Node: PVirtual Node; Kind: TVTI mageKi nd; Col um: | nteger;
var Chosted: Bool ean; var | magel ndex: |nteger);

Asyou can see, the parameter list isrelatively long. The parameter 'Sender' holds the
component from which the call came. 'Node' points to the node in question and '‘Column’
returns the current column. The parameter will have the value -1 if these are no columns
defined.

The meaning of the parameters we just discussed should be clear, by reading the other
chapters. New are the parameters 'Kind' and the reference parameter ‘Ghosted' and

‘Imagelndex’.".

'Kind' is an enumerated list with the following structure:

TVTI mageKi nd = (
i kNor mal ,
i kSel ect ed,
i kSt at e,
i kOverl ay

)

If the status of the node is normal, then 'Kind' has the value ikNormal. If the nodeis for
example selected it has the value 'ikSelected'.

If you set the Boolean parameter 'Ghosted' to true, the icon will be disabled. The default
valueisfalse.

Imagel ndex must be set to avalue in the ImageL.ist, to the picture that will be shown. The
count starts at O.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Use icons and images 35

An example could look like this. For this example you will need atree with at least two
columns and an ImageL.ist with two icons.

procedure TFor ml. vst Get | magel ndex(Sender: TBaseVi rtual Tr ee;
Node: PVirtual Node; Kind: TVTI mageKi nd; Col um: | nteger
var Chosted: Bool ean; var | magel ndex: |nteger);
begi n
case Kind of
i kNor mal , ikSel ect ed:
case Col umm of
0: | rmagel ndex: =0;
1: if Sender.FocusedNode = Node then
I magel ndex: =1
end;
end;
end;

In this example you will see two case-statements, one nested in th other. Thefirst
case-condition is only met when the node is either selected or normal. In this example an
ImageL.ist will be shown next to the first column. If a node has focus then the second
image is shown in this second column.

A complete example can be downloaded here.
9.1 Choose your own background

By using the property Background in the treeit is possible to select your own background
image. To ensure theimage is shown you must set the value toShowBackground in the
property TreeOptions|PaintOptions to true. The image must be a bitmap. The property
BackgroundOffsetX and BackgroundOffsetY define how many pixels the image must be
moved from the top-left angle. The image will betilled automatically.

9.2 Fonts for the node

The fonts can be set for every node. Thisis donein the event OnPaintText of the tree. This
event is comparable with the OnDrawltem-event of the TListbox, in which you also can
influence the Paint progress. The procedure header of the event-handler look like this:

procedure TFornil. vst Pai nt Text (Sender: TBaseVi rt ual Tr ee;
const Target Canvas: TCanvas; Node: PVirtual Node; Col um: | nteger;
Text Type: TVSTText Type) ;

Interesting here is the parameter TargetCanvas of the type TCanvas. It isdeclared asa
constant, but thisis not really important because with an object you only pass areference.
(By this parameter the fonts will be drawn.?) ("Uber diesem Parameter werden die
Schriftformatierungen vorgenommen."). All the possibilities of the TCanvas object are at
your disposal. Node hold the node in question and column the column.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

http://www.dsdt.info/tutorials/virtualtreeview/kap9.zip

36

Virtual TreeView tutorial

The procedure could look like this. In this example the tree must at least have two visible
columns.

All the nodes of the first column (column 0) will be set to bold, the nodes in the second
column will get the color red.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Save and Load

38

Virtual TreeView tutorial

10

Save and Load

The saving and loading of atreeiseasier then you might think, when you first look at it.
Although it is more complex then it was with the TTreeView component, it can still be
done with just afew lines.

The tree provides the methods SaveToFile and LoadFromFile, which will just need a (full)
filename as parameter. These methods will save build-up and the structure of the node
(including information if anode is collapsed or not) of the tree.

Saving:

procedure TFornl. Button2d i ck(Sender: TObject);
begi n

vst. SaveToFile(' C:\Virtual Treel. dat"');
end;

Loading:

procedure TFornl. Button3C i ck(Sender: TObject);
begin

vst. LoadFronFile(' C.\Virtual Treel. dat');
end;

Most of the time there is much more data that is attached to each node. This datais not
loaded nor saved by the methods we just mentioned. To simplify the saving and loading of
extra data the tree has provided the OnSaveNode- and OnL oadNode- events:

procedure TForm1.vstSaveNode(Sender: TBaseVirtual Tree; Node: PVirtualNode;
Stream: TStream);

Those events have the same procedure-header. By now you will understand what the
parameters Sender and Node are for. For the first time we see the parameter Stream.
Stream is the stream the datais added to. Because the stream is progressing (anodeis
attached to another node), it will be enough to just simply writing the data directly in the
stream by using Write. Y ou don't have to worry about the memory reservation or the
releasing of the Stream.

We assume that our data-record has the following structure:

type
PTreeData = ~TTreeDat a;
TTreeData = record
TestStr: String
end;

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

Save and Load 39

10.1 Saving
To save this data, you could do this (event: OnSaveNode):

procedure TFornl. vst SaveNode(Sender: TBaseVirtual Tree; Node:
PVi r t ual Node;
Stream TStream;
var
Dat a: PTreeDat a;
Len: integer;
begi n
Data : = vst. CGet NodeDat a(Node) ;
Len := Length(Data. TestStr);
Streamwite(Len, SizeO(Len));
Stream wite(PChar (Data. TestStr)”, Len);
end;

By using GetNodeData you can retrieve the address of the data. In our casetherecord is
just one string. Because the length of the string is dynamic, the actual length must be
saved, otherwise we will get into trouble when loading the data. The length in bytes will
be saved as the Integer-variable Len and written in the stream by using Stream.Write.
Directly after thisthe string will be written. The first parameter will b the address of the
pointer, then the length in Bytes. The length/size of the data typesis mostly retrieved by
using SizeOf (like with integer-types) or Length (like in this case with a string).

If your data contains an integer type, saveit like this:
Stream Wite(Data.lntegerVar, SizeO (Data.lntegerVar));

(When you save atree like thisit is recommended to set the property
TreeOptions|StringOptions so that the value 'toSaveCaptions' ison?) (or isit off?)

("Wenn du deinen Baum auf diese Weise abspeicherst, empfiehlt es sich die Eigenschaft
TreeOptions.StringOptions so zu bearbeiten, dass der Wert 'toSaveCaptions' nicht
enthalten ist.")

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

40

Virtual TreeView tutorial

10.2

10.3

Loading

The loading of the tree structure is barely different from saving the structure. Thistime we
find ourselves in the OnL oadNode-event:

procedure TFornl. vst LoadNode(Sender: TBaseVirtual Tree; Node:
PVi r t ual Node;

Stream TStream;
var

Dat a: PTreeDat a;

Len: integer;
begi n

Data : = vst. CGet NodeDat a(Node) ;

Stream read(Len, SizeCOf(Len));

Set Lengt h(Dat a. Test Str, Len);

St ream r ead(PChar (Dat a. Test Str)”, Len);
end;

First you must get the memory address van the data. After that the long string which we
stored as integer isread. With SetLength we specifically set the size in the memory, which
we have already retrieved with SizeOf. Finally we will use Stream.Read to read out our
strings. The function will need a start address of the string (PChar(Data. TestStr)”) and the
length (Len).

Remember to read out the datain the exact order in which you have stored it.

Now the tree should save the entire tree with data and with L oadFromFile ehe entire tree
should be loaded.

An example of this chapter can be downloaded here. The example is bases on the demo's
you will get with the Virtual Tree-Archives.

Make editing possible

The next chapter will show you how to make it possible for the users to edit anode on a
later time. This functionality you will know from the Windows Explorer, where you
rename data like this.

The component provides four event that handle editing. OnEditing is called when the tree
ison the verge of giving the giving the user access to the editing field. Thereis still time
to prohibit editing at this moment. I's a node successfully edited, then the
OnNewText-event is caled. Thisisthe time the new text is assigned to the node. Then the
event OnEdited will come next which will finish a successfully edited field. If the editing
is cancelled (by for instance the Esc button), the event EditCancelled is called.

Before you can even start by edit nodes, you have to add the value 'toEditable' to
TreeOptions|MiscOptions. Is the property not set, user editing will be impossible. Now it
should be possible to edit the main column (normally the column next to the left edge).

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

http://www.dsdt.info/tutorials/virtualtreeview/kap10.zip

Save and Load 41

In our example we will set up the following data-record:

type
PTreeData = ~TTreeDat a;
TTreeData = record
TestStr: String
end;

TestStr will be the caption of the node.

We want editing to be possibleif the node is the root node. So the function GetNodel evel
should return 0. The event to create this statement should be OnEditing:

procedure TFormnil. vst Editi ng(Sender: TBaseVirtual Tree;

Node: PVirtual Node; Columm: TCol umml ndex; var Al l owed: Bool ean);
begi n

Al | owed: =Sender . Get NodeLevel (Node) <1;
end;

The parameter Allowed, if true, will make editing possible. Node is the pointer set to the
node that is set to be edited.

If the user has entered atext en confirmed with 'return’, then the event OnNewText is
caled.
Thisiswhere the new text is stored into the data-record:

procedure TForml. vst Graphi csNewText (Sender: TBaseVirtual Tree;
Node: PVirtual Node; Col umm: TCol umml ndex; NewText: WdeString);
var
Dat a: PTreeDat a;
begi n
Dat a: =Sender . Get NodeDat a(Node. Par ent) ;
if Assigned(Data) then
Dat a. Descri pti on: =NewText ;
end;

The parameter NewText holds the new text that the user has just entered.

(With the property delay you set the delay, in milliseconds, that the Edit will be polled,
drawn or activated?) The default value is 1000.

Uber die Eigenschaft EditDelay steuern Sie, mit welcher Verzogerung in Millisekunden
das Editier-Feld angezeigt werden soll. Standardmal3ig steht die Eigenschaft auf dem Wert
1000.

© 2006 Author: Philipp Frenzel, translated by Koos de Graaf

	Installation
	The first node
	React on nodes by clicks
	Insert nodes in a specific location

	Insert node data
	Define the Data type
	Inserting the data
	Read out the data
	A little bit of theory
	Releasing the data

	The node caption
	The OnGetText event

	Working with Coloumns
	Nodes and Columns
	General Header events

	Adding a object to the node
	Define an object
	Insert the object
	Read the object
	Releasing

	Other Commands
	Foccused node
	Retrieve the node level
	Delete a node
	Delete all the children of a node
	The position of a node
	Expand / Collapse all nodes
	Expand / Collapse a specified node
	Does a node have children?
	Delete all Nodes
	Determine the parent
	Nodes with different heights
	Object Hierarchie

	Sorting nodes
	An Example

	Use icons and images
	Choose your own background
	Fonts for the node

	Save and Load
	Saving
	Loading
	Make editing possible

