
FastReport 3.0

User
manual

Edition 1.01

Copyright (c) 1998-2004, Fast Reports, Inc.

FastReport – User Manual 2

Table of Contents

Designer... 5
Control keys... 6
Mouse control.. 6
Toolbars... 7
Designer mode bar... 7
“Standard” toolbar..7
“Text” toolbar.. 8
“Frame” toolbar..9
“Align” toolbar...9
Designer options.. 10
Report settings..12
Page options... 13

Creating reports..15
TfrxReport component...15
“Hello, World!” report... 16
The “Text” object...18
HTML-tags in the “Text” object.. 20
Displaying expressions with the help of the “Text” object..21
Bands in FastReport... 22
Databands...24
TfrxDBDataSet component..25
“Customer List” report...26
Displaying DB fields with the help of the “Text” object .. 28
Aliases..29
Variables.. 31
“Picture” object.. 32
Report with pictures... 34
Multi-lined text displaying...35
Data splitting.. 37
Text wrap of objects...39
Displaying data in the form of a table.. 41
Printing labels.. 44
Child-bands.. 46
Shifting objects ... 47
Report with two data levels (master-detail)... 49
Data linkage... 51
Headers and footers of a data band.. 52
Report with groups...54

Other group features...56
Lines numbering...58
Aggregate functions... 60
Page and report totals...62
Inserting aggregate function ..64

FastReport – User Manual 3

Values formatting...65
Inline formatting...66
Show stripes... 69
Multipage reports... 70
Nested reports (subreports).. 72
Side-by-side subreports..73
Limitations on using subreports ..73
PrintOnParent option... 74

Cross-tab reports.. 76
Construct a cross-report... 77
Using functions.. 81
Sorting values ..82
Table with composite headers..82
Adjusting cell width .. 85
Font colors and highlighting.. 86
Managing a cross-table from the script..87
Adjusting rows/columns size... 90
Filling a table manually..91

Diagrams.. 93
Limitation of number of diagram values ...96
Some useful settings...96
Diagram with specified values... 97

Script.. 99
Taste of script...100
Structure of a script ... 102
"Hello, World!" script.. 103
Using objects in the script..104
Calling the variables from the report’s variables list .. 105
Calling the DB fields..105
Using aggregate functions in the script.. 105
Displaying the variable’s value in a report...106
Events...106
Example of using the “OnBeforePrint” event..107
Printing the group’s sum total in the group’s header .. 110
“OnAfterData” event..113
Service objects... 113
“Report” object.. 114
“Engine” object.. 114
"Outline" object..115
Using the “Engine” object..116
Anchors.. 118
Using the “Outline” object...120
“OnManualBuild” page’s event... 123
Creation of objects in the script... 127

Dialogue forms...129
Controls..129

FastReport – User Manual 4

“Hello, World!” report... 131
Entering parameters and transferring them into a report..132
Interaction of controls ... 133

Data access components...134
Components’ description... 134
TfrxDBLookupComboBox.. 135
TfrxBDETable... 135
TfrxBDEQuery...137
TfrxBDEDataBase... 138
Report constructing.. 139
Simple report of the “List” type... 140
Report with parameters’ query...141

FastReport – User Manual 5

Designer
The component is supplied with the embedded designer, which can be called in

design-time by double-clicking on the TfrxReport component. The designer provides the
user with convenient tools for developing report’s appearance, along with the ability of
simultaneous previewing. Designer’s interface meets up-to-date requirements. It contains
several toolbars, which can be located wherever you want. The information about bar’s
location is stored in a ini-file and is restored each next time you launch the program. All
other designer’s settings are stored in the ini-file as well.

The designer can be accessed from Delphi environment in design-time. To use the
designer in a project, you should either use the “TfrxDesigner” component from the
FastReport component palette, or add the “frxDesgn” unit into the uses list. Using the
designer in run-time allows a user to set the report’s appearance, as well as to edit a
finished report.

In the picture, denoted with numbers:
1 – designer’s working space;
2 – menu bar;
3 – toolbars;

FastReport – User Manual 6

4 – object's toolbar;
5 – designer mode toolbar;
6 – report pages’ tabs;
7 – “Report tree” window;
8 – “Object inspector” window;
9 – “Data tree” window. You can drag elements to a report page from this window;
10 – rulers. When dragging a ruler to a report page, the guide line (which objects can be
adhered to) appears;
11 – status line.

Control keys

Keys Description
Ctrl+O “File|Open…” menu command
Ctrl+S “File|Save” menu command
Ctrl+P “File|Preview” menu command
Ctrl+Z “Edit|Cancel”menu command
Ctrl+Y “Edit|Repeat”menu command
Ctrl+C “Edit|Copy” menu command
Ctrl+V “Edit|Paste” menu command
Ctrl+X “Edit|Cut” menu command
Ctrl+A “Edit|Select all” menu command
Arrow Move between objects
Del Delete of the selected objects
Enter Call the editor of the selected object
Shift+arrows Modify sizes of the selected objects
Ctrl+arrows Move the selected objects
Alt+arrows The selected object is adhered to the nearest one in the specified

direction.

Mouse control

Operation Description
Left button Selecting an object; pasting a new object; moving and

resizing objects. For the selected objects, you can perform
zooming in and out by dragging the red square in the left
bottom corner of the selected objects’ group.

Right button Selected object's contextual menu.
Double-click Object editor call. Double-clicking on the white space of a

page calls the “Page Settings” dialogue box.
Mouse wheel Scrolling a report page.
Shift + left button Toggle object's selection.

FastReport – User Manual 7

Ctrl + right button If you hold the left mouse button during moving a mouse, a
frame appears. As soon as you release the mouse button, all
the objects captured in the frame would be selected. This
operation can also be performed by clicking on the blank
space on the page, and moving the mouse cursor to the
required position.

Alt + left button If the “Text” object is selected, it edits its contents in place.

Toolbars

Designer mode bar

The bar is integrated with the object bar and has the following buttons:

Icon Name Description

Object selecting A standard mode of operation, in which a cursor
allows to select objects, modify their sizes, etc.

Hand Clicking on this icon allows dragging a report
page.

Zoom Clicking on the left button doubles the zoom (adds
100%), while clicking the right one zooms out by
100%. When holding the left mouse button while
dragging, the selected area would be zoomed.

Text editor Clicking on the “Text” object allows editing its
contents right on the report page. If you hold the
left mouse button when moving the cursor, the
“Text” object appears in the selected place, and
then its editor launches.

Format copying The button becomes enabled when the “Text”
object is selected. When clicking on the “Text”
object with the left button, it copies formatting,
which has the previously selected “Text” object,
into the object.

“Standard” toolbar

Icon Name Description
New report Creates a new blank report.

FastReport – User Manual 8

Open report Opens an existing report from the file. Hotkeys
combination – “Ctrl+O.”

Save report Saves a report into the file.
Hotkeys combination – “Ctrl+S.”

Preview Performs report constructing and its previewing.
Hotkeys combination – “Ctrl+P.”

New page Adds a new page into the report.
New dialogue form Adds a new dialogue form into the report.
Delete page Deletes the current page.
Page properties Calls a dialogue with page properties.

Variables Calls the report variable’s editor.
Cut Cuts the selected objects into the clipboard.

Hotkeys combination – “Ctrl+X.”
Copy Copies the selected objects into the clipboard.

Hotkeys combination – “Ctrl+C.”
Paste Pastes objects from the clipboard.

Hotkeys combination – “Ctrl+V.”
Formatting pattern Sets the “Text” object’s formatting pattern. Select

the “Text” object and click on this button. All the
following pasted “Text” objects will have the
same formatting as specified in the pattern. To
reset formatting settings, click on blank space of
the page and click on this button.

Cancel Undo the last operation.
Hotkeys combination – “Ctrl+Z.”

Repeat Redo the last cancelled operation.
Hotkeys combination – “Ctrl+Y.”

Show grid Shows the grid on the page. Grid pitch can be set
in designer options.

Grid alignment During dragging or during modifying object sizes,
the coordinates/sizes are modified step-wise,
according to grid pitch.

Locate in grid
crosspoints

Modifies sizes/location of the selected objects so
that they would be located at grid crosspoints.

Zoom Sets the zoom.

“Text” toolbar

Icon Name Description

FastReport – User Manual 9

No style Style Allows to select a style. To define the style list, call
the “Report|Styles…” menu item.

Arial Font Allows to select font name from the drop-down list.
Stores last five fonts previously used.

8 Font size Allows to select font size from the drop-down list.
Size can also be entered manually.

Bold Enables/disables font bolding.
Italic Enables/disables italics.
Underline Enables/disables font underlining.
Font color Selects font color from the drop-down list.
Highlighting Shows the dialogue with highlighting attributes for

the selected “Text” object.
ab Text rotation Allows to select text rotation.

Left alignment Enables text left alignment.
Center alignment Enables text center alignment.
Right alignment Enables text right alignment..
Justify by width Enables text justifying by width.
Top alignment Enables text top alignment..
Height alignment Enables text height alignment..
Bottom alignment Enables text bottom alignment.

“Frame” toolbar

Icon Description Description

Top line Enables/disables top frame line.
Bottom line Enables/disables bottom frame line.
Left line Enables/disables left frame line.
Right line Enables/disables right frame line.
All lines Enables all frame lines.
No lines Disables all frame lines.
Shadow Enables/disables shadow.
Background
color

Selects background color from the drop-down list.

Line color Selects line color from the drop-down list.
Line style Selects line style from the drop-down list.

2 Line width Selects line width from the drop-down list.

“Align” toolbar

FastReport – User Manual 10

Icon Description

Align left edges.
Centre across.
Align by right edges.
Align top edges.
Justify vertically.
Align bottom edges.
Justify by width.
Justify by height.
Center across in window.
Center vertically in window.
Set the same width as in the first selected object
Set the same height as in the first selected object

Designer options

Set the designer options via the “View|Options..." menu command.

FastReport – User Manual 11

Here you can set the necessary units (centimeters, inches, pixels), and specify grid
step for each unit. You can switch units in the designer as well, via double-clicking on the
left part of the status line where the current units are displayed.

You can also specify whether grid should be displayed, and align to grid. This can

be performed via buttons in the “Standard” toolbar of the designer as well.

You can set a font for the code editor window and for the “Text” object editor. If
the “Use object's font settings” option is enabled, the font in the text editor window
would correspond with the font of the edited object.

If white background of the designer display field and service windows is not
convenient for you, you can modify it via the “Workspace” and the “Tool windows”
buttons. The “LCD grid color” option increases contrast of the grid lines a little, and it
improves their visibility on LCD monitors.

The “Show editor after insert” option controls the process of new objects
inserting. If the option is enabled, its editor will be displayed each time an object is
inserted. When creating a large number of blank objects, it is recommended to disable the
option.

FastReport – User Manual 12

Disabling the “Show band captions” option, you can disable bands’ captions in
order to save some place in a page. At that, the band’s captions would be written inside of
it.

The “Free band placement” option disables snapping of bands to the page. This
option is disabled by default and bands are automatically grouped in page according to
their function. A gap between bands can be set in the “Gap between bands” field.

Report settings

A window with report parameters is available from the “Report|Options...” menu.
A dialogue has two pages:

You can tie a report with one of the printers installed in the system. This means
that report printing will be performed by the selected printer by default. This might be
useful in case when there are several different printers in the system; e.g. text documents
can be tied with monochrome printer, while documents with graphic - with the color one.
There is the “Default printer” item in the list of printers. When this item is selected, the
report will not be tied with any printer, and therefore printing will be performed by a
printer, which is set as the default one.

You can also set number of report copies to be printed and specify, whether it is
necessary to perform collation. The values, which a user sets in this dialogue, would be
displayed in the “Print” window.

If the “Double pass” flag is selected, report’s formation will be performed in two
steps. During the first pass, a report is formed, and is divided into pages, but the result is
not saved anywhere. In the second pass a standard report formation with saving a result in
the stream is performed.

FastReport – User Manual 13

Why two passes are necessary? Most often, this option is used in cases when in a
report there is mentioning about the total number of pages in it, i.e. the information of the
“Page 1 of 15” type. The total number of pages is calculated during the first pass and is
available via the “TOTALPAGES” system variable. The most frequent mistake is an
attempt to use this variable in a single-pass report; in this case it returns “0.”

Another field of application is performing any calculations in the first pass and
displaying of results in the second pass. It might be convenient, for example, in case when
it is required to display a sum in the group header, which usually is calculated and
displayed in the group footer. Calculations of such kind are connected with usage of the
FR embedded language.

The “Print if empty” flag allows to construct a report, which contains no data
lines. If this option is disabled, blank reports would not be constructed.

The “Password” field enables to set a password which will be inquired on opening
a report.

Controls in the second page of the dialogue enable to set report’s description.

Page options

Page’s parameters are available via either the “File|Page settings...” menu, or
double-clicking on page blank space. The dialogue has two pages:

FastReport – User Manual 14

On the first dialogue page, you can select size and alignment of paper, as well as
set margins. In “Paper source” drop-down lists you can select a printer tray for the first
page and the rest report pages.

You can point the number of columns for multi-column reports’ printing. The
current settings are displayed in the designer.

The “Print to previous page” flag allows to print pages, beginning from blank
space of the previous page. This option can be used in case when a report template
consists of several pages or when printing batch (composite) reports.

The “Mirror margins” option switches right and left margins of page for even
pages during previewing or printing a report.

The “Large height in design mode” option increases page’s height several times
more. This feature can be useful if many bands are located in the page. At the same time,
the height value of a page will not be changed during report construction.

FastReport – User Manual 15

Creating reports
In this chapter we will observe features of the FastReport main components and

objects, which constitute the basis of such reports, as “TfrxReport,” “TfrxDBDataSet,”
“TfrxUserDataSet,” “TfrxMemoView,” and “TfrxBand.” One will learn about how to
build simple reports, containing data from DB tables.

TfrxReport component

The “TfrxReport” component constitutes the basis of any report. Each such
component can contain one report only. The component has everything necessary for
report loading, designing, previewing, and printing. Let us observe the most important
TfrxReport methods.

function LoadFromFile(const FileName: String; ExceptionIfNotFound:
Boolean = False): Boolean;
 loads a report form from the file with a specified name.

procedure SaveToFile(const FileName: String);
 saves the current report form into the file with a specified name.

procedure DesignReport;
 calls the report designer.

procedure ShowReport(ClearLastReport: Boolean = True);
 runs a report and displays it in the preview window.

“ShowReport” is the only method we would need in this chapter. The only one
parameter of this method defines whether the old report should be cleared before building
a new one. This parameter is equal to “True” by default, since it is rather convenient to
us.

Report objects

A blank report in FastReport is presented as a paper. At any part of the page, a
user is able to allocate objects, which can display different information (such as text
and/or graphics), as well as to define report’s appearance. Let us describe briefly the
assignment of the FastReport objects, which are included into the standard package:

- “Band” object allows create a report area, which would have definite behaviour;
- “Text” object displays one or several text lines within the rectangular area;
- “Picture” object displays a graphic file in “BMP,” “JPEG,” “ICO,” “WMF,” or “EMF”
format;
- “Line” object displays a horizontal or a vertical line;
- “System text” object displays service information (date, time, page number, etc), as well

FastReport – User Manual 16

as aggregate values;
- “Subreport” object allows inserting an additional report inside the basic one;
- the objects of “Draw” category represent different geometrical figures (diagonal line,
rectangle, rounded rectangle, ellipse, triangle, and diamond);
- “Chart” object displays data in the form of diagrams of different kinds (circle diagram,
histogram, and so on);
- “RichText” object displays a formatted text in Rich Text Format (RTF);
- “CheckBox” object displays a checkbox with either a check or a cross;
- “Barcode” object displays data in the form of barcode (many different types of barcodes
are available);
- “OLE” object is able to display any object using OLE technology.

The basic objects you would mostly need to work with are the “Band” and “Text”
objects. You will acquaint with their capabilities in detail further in this chapter.

“Hello, World!” report

Thus, we create a new report in Delphi by selecting the “File|New” application.
We put the “TfrxReport” component from FastReport component palette on the project
form. This is all we would need to create our first report.

The report will contain one inscription only (“Hello, World!”). Open the designer
by doubleclicking on the “TfrxReport” component (otherwise you can select the “Design
Report...” item in the component pop-up menu). After that, click the “Text” button in the
"Objects" designer panel. Move the mouse cursor to the necessary place on the page, and
click again. The object thus has been inserted.

The text editor window will be displayed right away; if it does not appear (this can
be set in the designer settings), then doubleclick the object. Enter the “Hello, World!”
text, and then click the “ОК” button.

FastReport – User Manual 17

The report is created. To preview it, either select the "File|Preview" menu item, or
click the corresponding button in the toolbar. The preview window containing an only
report page with the “Hello, World!” inscription will appear. This report can be printed
out, saved to a file, or exported to one of the supported formats.

We have done all the work in Delphi IDE without writing a code line. If a user
wishes to start a project, one would need to add some things. Create a button on the
project form, and then write the following in its handler:

 frxReport1.ShowReport;

Thus, as soon as your application is activated, the report will be built and
displayed as soon as you click on this button.

Let us complicate our first report a little. Let the text (“Hello, World!”) be
displayed in bold letters with yellow background and a frame. Also let us make the
current date to be displayed next to the text.

Once again, open FastReport, and select an object with a text with the help of the
mouse. Note that some buttons on toolbars become active. Find the “Bold” button in the
“Text” toolbar, and click on it. To enable the frame, click on “All frame lines”. If

necessary, some frame lines can be disabled by using buttons. A

user can set line color, its width, and style if necessary. We find the “Fill color”
button and select yellow from the dropped list.

The easiest way to display a date is to use the “System text” object. We add it to
the page in exactly the same way as we have done it with the first object. Then we select
“System variable” in the editor window and “[DATE]” in the dropped list below.

FastReport – User Manual 18

Close the editor by pressing the “OK” button, and start the report to see the result.

The “Text” object

The “Text” object possesses manifold features. Now we already know that it
allows to display a text, a frame, and filling. A text can be displayed using any font of any
size and style. All the parameters can be set visually, with the help of the toolbars:

Here are some examples of text design:

FastReport – User Manual 19

Now let us get acquainted with other features of this basic object. As an example,
let us create a new text object and put two lines into it:

 This is a very, very, very long text line.
And this is another line, the shorter one.

Let us enable the object frame, and then resize the object up to 9x3 cm with the
help of the mouse. We see that the object can display not only a single-lined text, but
several lines as well. Now let us reduce the object width up to 5cm. It is obvious that long
lines did not find room in the object and therefore were wrapped. This happens due to the
“WordWrap” object property. If it is disabled (either in inspector or in the object context
menu), the long lines will be simply cut off.

Now let us check up, how the text alignment inside the object works. Alignment
buttons are located in the “Text” toolbar and allow to set horizontal or vertical text
alignment. Pay attention to the “Block Align” button; this button allows to align the
paragraph on both object edges. When performing this operation, the “WordWrap” option
must be enabled.

A whole text can be rotated at any angle within the limit of 0..360 degrees. The
 button in the “Text” toolbar allows to quickly rotate the text at 45, 90, 180 and 270

degrees. If you wish to rotate the text at any other value, use the object inspector. The

FastReport – User Manual 20

“Rotation” property sets the required angle. When rotating a text, setting values other
than 90, 180, 270 the text can exceed bounds of the object, as in our case (see the picture
below). Let us increase object height a little, so that the text would fit the object.

Let us briefly dwell on some “Text” object properties, which influence its
appearance. Most of these properties are available in the object inspector only:

 - BrushStyle – type of object filling;
 - CharSpacing – sрасe between symbols in pixels;
 - GapX, GapY – text indents from object’s left and top boundaries (in pixels);
 - LineSpacing – space between lines (in pixels);
 - ParagraphGap – the first paragraph line indent (in pixels).

HTML-tags in the “Text” object

Yes, this object does understand some simplest HTML tags. Tags can be located
inside the text of an object. Tags are disabled by default; to enable them, either select the
“Allow HTML tags” item in the object context menu, or enable the “AllowHTMLTags”
property in the object inspector. Here is the list of supported tags:

 - bold text
<i> - text in italic
<u> - underlined text
<sub> - subscript
<sup> - superscript
 - font color

As one may notice, not too many tags are supported, but it is rather enough for the

FastReport – User Manual 21

majority of applications. It is impossible to modify font size and name; otherwise the text-
rendering unit in FastReport must be appreciably complicated.

The following examples demonstrate how these tags can be used.

text bold text <i>text in italic</i> <i>bold and in italic</i>
E = mc²
A₁ = B²
this is a usual text, and this is a red one
this is a usual text, and this is an orange one

Displaying expressions with the help of the “Text” object

One of the most important features of this universal object is a possibility to
display not only a static text, but expressions as well. At the same time, expressions can
be located in the object together with a text. Let us examine a simple example of how it
can be performed.

In the previous section, we have already made a report, which printed the “Hello,
World” line and displayed a current date. To perform that, we had to allocate two objects
in the report. Thus, one of them contained a greeting text, while the other one contained
the “DATE” system variable. However, to display both a line and a date, we can use the
“Text” object only. To accomplish this, we would need to put a line into the object, and
this would look something like follows:

 Hello, World! Today is [DATE].

Thus, when running the report, we can get something like follows:

 Hello, World! Today is 01.01.2004.

What lead to such result? During FastReport report construction, it met in the text
an expression enclosed in square brackets, calculated it and inserted the received value
back into the text (having removed brackets, of course). The “Text” object can contain
any number of expressions, together with a usual text. Both single variables and
expressions can be enclosed in brackets (for example, [1+2*(3+4)]). Any constants,
variables, functions, and DB fields can be used in expressions. We will observe these
features later, futher in the chapter.

FastReport – User Manual 22

Thus, FastReport automatically recognizes expressions enclosed in square
brackets in the text. But what should be done if our object contains square brackets, and
we do not want them to be considered as expressions? For example, if we need to display
such text as following:

a[1] := 10

FastReport considers [1] as an expression, and displays the following:

a1 := 10

that is not convenient to us, of course. One of the ways to avoid such situation is to
disable the expression. Just disable the “AllowExpressions” property (“Allow
Expressions” in the context menu), therefore all the expressions in the text will be
ignored. In our example, FastReport would display exactly what we need:

a[1] := 10

Sometimes a text is required to contain both an expression and a text in square
brackets, for example:

a[1] := [myVar]

Disabling of an expression allows to display square brackets in the required place,
but it also disables handling of expression. In this case, FastReport allows to create
another set of symbols, designating the expression. The “ExpressionDelimiters” object
property, which is equal to “[,]” is responsible for it. In our case, the user can use angular
brackets for the expressions, instead of square ones:

a[1] := <myVar>

At the same time, the “<,>” value must be set in the “ExpressionDelimiters”
property. As you can see, the comma divides opening and closing symbols. There is one
limitation however: the opening and closing symbols cannot be similar, so “%,%” will
not work. One can set several symbols, for example “<%,%>” Thus, our example will
look as follows:

a[1] := <%myVar%>

Bands in FastReport

Bands are used for logical object grouping. Thus, when placing an object to a
band, such as “Page Header,” we inform FastReport that the given object must be
displayed on the top of each page of a finished report. In the same way, the “Page Footer”
band is displayed at the bottom of each page together with all the objects allocated in it.

FastReport – User Manual 23

Let us demonstrate it with an example. Let us create a report, which contains the “Hello!”
inscription on the top of the page, a current date to the right of it, and a page number at
the foot of the page (to the right).

Open the FastReport designer and click the “New report” button in the toolbar.
You will see a report template, which already contains three bands: “Report title,”
“Master data,” and “Page footer.” Let us remove the “Master data” band for a while (to
do that, click either on any free space inside the band, or on its header, and then remove it
by pressing the “delete” key or using the corresponding section in the contextual menu).
Now let us add a new band (“Page header”). To perform this, click the “Add band” button
and select “Page header” in the dropped list. We see that a new band is added to the page.
At the same time, the existing bands were moved down. FastReport designer
automatically allocates bands on the page, and, as a result, header-bands are allocated on
the top, data-bands are in the middle, and footer-bands are at the bottom.

Now let us allocate objects. Allocate “System text” object in the “Page header”
band and select “System variable” in its editor “[DATE]” (you should remember that the
date can be displayed with the help of a usual “Text” object by typing “[DATE]” in its
editor). We allocate “Text” object, which will contain the “Hello!” text in the “Report
title” band. Moreover, as you can see, the required object, which displays page number, is
already allocated in the “Pagefooter” band.

If running the report, you would see that the objects in the finished report are
allocated in the way we need.

FastReport – User Manual 24

Thus, bands are responsible for object allocation in required places. Depending on
band type, we can allocate an object either at the top or at the bottom of the page, on the
first page, or on the last one. The basic bands, which we would need in most reports,
work in the following way:

- “Page header” band is displayed at the very top of each page;
- “Page footer” band is displayed at the very bottom of each page;
- “Report title” band is displayed at the top of the first page, but below the “Page header”
band;
- “Report summary” band is displayed at the very end of a report, at white space.

Databands

Thus, we are about to examine the most interesting thing, a possibility of printing
the data from DB tables or queries. What is considered a table in such case? It is a
required number of lines (records), each of which has a certain number of columns
(fields). To print information of this kind, FastReport uses a special type of bands
(databands). These are bands with names of “xxx data level” type. To print a whole table
or some of its fields, it is necessary to add such band to the report, connect it to the table,
and allocate in it the objects with the fields a user wants to be printed out. When building
a FastReport report band, printing operation should be performed as many times, as there

FastReport – User Manual 25

are records in the table. Thus, if there is no free space on the page, new report pages will
be formed.

TfrxDBDataSet component

The “TfrxDBDataSet” component-connector from the FastReport component
palette is applied to the band in order to connect a table (or any other data source). This
component plays a role of a messenger between the data source and the FastReport core.
The component is responsible for records navigation and field reference. This allowed the
FastReport core to be independent from any data access library. FastReport can
simultaneously work both with “BDE,” “IB_Objects” (with their non-standard
realization, incompatible with TDataSet), and other libraries, as well as to receive data
from a source, not connected with DB, for example, from an array or a file.
TfrxDBDataSet component is intended for working with data sources, compatible with
TDataSet (they are BDE, ADO, IBX and a great majority of other libraries). The
“TfrxIBODataSet” component is intended for working with IB_Objects. The

“TfrxUserDataSet” component works with other data sources (arrays, files, etc.).

It is very easy to use the “TfrxDBDataSet” component. To connect it with the data
source, you should set the “DataSet” property (which connects directly to a table or a
query) or the “DataSource” property (which connects to the “TdataSource” component).
Both ways of connection are equivalent, though the first one allows managing without the
“TdataSource” component.

To make the component (and the data connected to it) available in the report, data
sources used in the report must be clearly specified. To do that, select the “Report|Data...”
menu item in the “FastReport” designer, and then select the required sources in the
opened window.

FastReport – User Manual 26

“Customer List” report

Our second report will be much more complicated than the first one (it will
contain DB table data, a list of clients of a firm). To perform this, let us use the
demonstration database DBDEMOS, which is included in the Delphi distribution kit. Let
us create a new project in Delphi. Put the “TTable” component on the form and set its
properties:

DatabaseName = 'DBDEMOS'
TableName = 'Customer.db'

For working with the table from FastReport, let us add the “TfrxDBDataSet”
component, and then set its property:

DataSet = Table1

Finally, let us put “TfrxReport” (the basic componenet of FastReport) on the
form, open the designer, and click the “New report” button, so that FastReport would
automatically create a blank pattern with three bands (“Report title,” “Master data,” and
“Page footer”). To make our table visible in FastReport, it is must be permitted to use it.
To perform this, select the “Report|Data...” menu item and select the table (it is the only
table in the list at the moment). After closing the dialog window, the table and its fields
become visible in the “Data” service window.

Now let us settle down report form creating. Put the “Text” object with the “List
of clients” text to the “Report title” band. After that, connect the “Master data” band to
our data source. It can be performed in one of the following three ways:

- double-click on the band;
- select the “Edit...” item in the band contextual menu;
- click on the “DataSet” property in the object inspector.

Now we will place four objects (which would display a client’s number, a
customer name, phone and fax) on the band. Let us do it in several different ways in order
to demonstrate the features of the FastReport designer. Put the first “Text” object on the
band and enter “[frxDBDataSet1.”CustNo”]” to it. It is the most inconvenient way, since
the link has to be enetered manually, and there is a possibility to enter the text incorrectly.
To make inserting of such links into the text easier, we can use the expression designer
(its button is located in the toolbar of the “Text” object editor). To insert our field,
double-click on the required element in the opened dialogue. By clicking the “OK”
button, we close the dialogue and see the field inserted into the text.

The second way of the DB field inserting into the report is quite similar to the one
widely used in the Delphi environment; we will perform it with the help of property
setting in the object inspector. Put the second object in the band, without writing anything

FastReport – User Manual 27

in the editor. Let us set object properties in the inspector:

DataSet = frxDBDataSet1
DataField = 'Company'

Since both of the properties are presented as a list, we only need to select the
required values with the help of the mouse.

The third way is to “drag and drop” the required field from the “Data” service
window into the report. It is the most simple and obvious way. Take the “Phone” field
with the help of the mouse, and then drag it to the band. The only one thing, which should
be done in our case, is to disable the “Create header” flag at the bottom of the “Data”
window (otherwise we would create a superfluous object, containing the field title, in
addition to the required field).

Finally, here is the fourth way. Place a blank “Text” object on the band, and then
move the cursor to the object. In the right part of the object you will see the image of the
button with the down arrow (as in opening lists). This is the DB fields’ opening list. Click
the button and select the ”FAX” field in the list. You can use this feature when the band is
connected to data.

Thus, our report is finished:

FastReport – User Manual 28

Click on the “Preview” button and see, what we have got.

Displaying DB fields with the help of the “Text” object

As you can see, the “Text” object is able to display data from DB, in addition to
displaying static text and expressions. Moreover, we can do it in two ways: by either
placing a link to the DB field into the object text, or connecting an object to the required
field with the help of the “DataSet” and “DataField” properties. The first way is rather
good in terms of possibility to display both field contents and any explanatory statement
in one and the same object. For example:

Contact person: [frxDBDataSet1."Contact_Person"]

FastReport – User Manual 29

As you can see, special syntax is used for links to the DB field: data_set_name.
“field_name.” The field name (as well as the set name) can contain spaces. Space
between the “point” and “quote” symbols is not permitted.

Not only a link to a field can be placed in the text of the object. We can apply
different computing operations to a field as well:

Length (cm): [<frxDBDataSet1."Length_in"> * 2.54]

Pay attention to how square and angle brackets have been used. Remember that
square brackets are used by default for to marking out the expressions, which are included
in the object text. In case of need, square brackets can be substituted for a pair of any
other opening/closing sequences (see the “Displaying expression with the help of the
“Text” object” section). Angular brackets are used inside expressions for marking out the
FastReport variables and DB fields. To be logical, we should write

Contact person: [<frxDBDataSet1."Contact_Person">]

instead of

Contact person: [frxDBDataSet1."Contact_Person"]

Nevertheless, both these notations are correct, since FastReport allows absence of angular
brackets, in case when an expression contains only one variable or only one DB field.
However, if an expression contains several members, the brackets are obligatory:

Length (cm): [<frxDBDataSet1."Length_in"> * 2.54]

This is one of the essential distinctions from the earlier FastReport versions,
where square brackets are mostly used (instead of angle ones). This was made due to the
fact that all expressions are processed with the script language, where square brackets are
used for marking out either sets or open arrays.

Aliases

In the previous report, we used the data source with the “frxDBDataSet1” name
and the following fields: “CustNo,” “Company,” “Phone,” and “FAX.” Accordingly, we
had to insert something like “[frxDBDataSet1."CustNo"]” into the report. Does it seem to
be quite clear? No, it does not. One would want to rename the data source, and the field,
naming it “Our clients” and “Number” respectively. However, “frxDBDataSet1” is a
name of the componenet, which does not support spaces. And “CustNo” is a name of the
field; it cannot be renamed directly (without database restructuring). There is however a
way out. The user can use so-called pseudonyms or aliases in such situations. Both the
data source and the field possess second names, i.e. aliases, which can easily be modified
(the original names, of course, are not modifiable). If a name has an alias, this alias is
what is used in FastReport. Otherwise, the original name is used.

FastReport – User Manual 30

It is very easy to rename a data source and its fields in FastReport. This is
performed from Delphi environment. To open the alias editor, double-click on the
“TfrxDBDataSet” component. You can modify the data source name, names of its fields,
and select the fields you would need in the report. Let us rename the source and fields
(see picture):

Note, that an alias of the source can be modified without using the alias editor. To
perform this, modify the “UserName” property of the “TfrxDBDataSet” component.

Now we need to modify the report, as the names of the fields have been changed.
To modify the names of fields in objects, it is easier to use the fourth way, which was
described in the "List of clients Report" chapter. Move the mouse cursor to the “Text”
object so that the button in the right part of the object would appear, click on the button,
and select a necessary field in the list. As you can see, now the data source name and its
fields’ names are more than understandable.

The only thing remains to be said is that it is better to perform the operation of
assigning an alias in the very beginning, before starting building a report. This can help to
avoid subsequent field renaming in the report.

FastReport – User Manual 31

Variables

In addition to usage of aliases, there is one more way, which allows to set more
understandable names for DB fields (and not only for them). One can compare a DB field
name, as well as any expression, to the variable. To operate with variables in FastReport,
select the “Report|Variables...” menu item, and then click “Variables” in the toolbar.

The list of variables in FastReport has a two-level structure. The first level
contains categories, and the second contains the variables themselves. Categorization of
the variables is designed for convenience when a list of variables is too long. A list must
contain at least one category. That means, that the variables cannot be located at the upper
level. Furthermore, categories are needed for logical variables classification only,
therefore, they are not included in reports. That is why, when setting a name for a
variable, do not forget that it must be unique; it is impossible to create two identical
variables in different categories.

Let us illustrate use of variables by the following example. Assume we have two
data sources: the first is “frxDBDataSet1” with the “CustNo” and “Name” fields and the
second is “frxDBDataSet2” with the “OrderNo” and “Date” fields. We can compare the
following list of variables to the fields:

Clients
 Clilent number
 Client name
Orders
 Order number
 Order date

where “Clients” and “Orders” are two categories. Let us open the variables editor and
create a required structure with the help of the “New category,” “New variable,” and
“Edit” buttons. To compare the variables to the DB fields, let us select a variable and
double-click on the required DB field in the right part of the window. The link to the DB
field will be moved to the bottom of the window. An expression at the bottom of the
window would be the value of variable. If it were necessary, it can be edited manually.
The categories must not be compared to anything.

FastReport – User Manual 32

After the list of variables is created, close the variables editor. Now we need to
insert the variables into the report. In contrast to inserting DB fields, there are fewer
variants here. We can either insert a variable into the object text manually by typing the
“[Client number]” text, or drag a variable from the “Data” service window to the required
place of the report. In the second case, it is required to switch to the “Variables”
bookmark in this window.

“Picture” object

The next object to be examined is the “Picture” object. It is also often used in
reports. With the help of this object, you can insert a trademark of your firm, a photo of
your employee or any other graphical information. The object is able to display graphics
in “BMP,” “JPEG,” “ICO,” “WMF,” and “EMF” formats.

Let us examine the capabilities of the object. Create a blank report and place the
“Picture” object to the report list. You can load a picture from the file or clear an existing
picture in the object editor (if it does not open automatically, then doubleclick on the
object). Load any desired picture and click “OK.”

FastReport – User Manual 33

There are the following options in the object contextual menu (in brackets are the
corresponding names of the properties in the object inspector):

- AutoSize
- Stretch – enabled by default
- Center
- KeepAspectRatio – enabled by default

If the “AutoSize” option is enabled, we can see that the object is being resized,
according to the size of the picture it contains. Sometimes such feature can be useful, if
pictures of different sizes are to be displayed. This option is disabled by default, due to
the fact that it is rather convenient in most cases.

The “Stretch” option is enabled by default. This option stretches the picture inside
an object. Modify object size with the help of the mouse and you will see, that the picture
size always corresponds to the object’s size. If this option is disabled, the picture will be
displayed in its original size. This behaviour differs from the “AutoSize” option because
the object dimensions are not adjusted according to the picture size, which means that the
object can be larger or smaller than a picture is.

The “Center” option allows aligning a picture inside the object.

The “KeepAspectRatio” option is enabled by default and performs a very useful
task: it does not allow the picture ratioes to distort when object sizes are modified. This
option works only together with the “Stretch” option. When applying any object
dimensions, a drawn circle will remain a circle, without turning into an oval. At that, the
stretched picture occupies not the whole internal space of an object but only a part of it,
necessary for displaying of the picture in correct ratioes. If the option is disabled, a

FastReport – User Manual 34

picture will be stretched by whole object size, and if object’s size does not correspond to
the initial dimensions of the picture, it will be distorted.

Report with pictures

The “Picture” object, as well as many objects in FastReport, can display data from
DB. The connection of an object to a required DB field is realized with the help of the
“DataSet” and “DataField” properties in the object inspector. In contrast to the “Text”
object, this is the only way to connect an object to data.

Let us demonstrate the aforesaid with a report, which would have images of
fishes, and their names. To perform this, we will again need the “DBDEMOS”
demonstration database, which is included in Delphi distribution kit.

Let us create a blank project in Delphi, and then put the “TTable” component on
the form and set its properties:

DatabaseName = 'DBDEMOS'
TableName = 'Biolife.db'

For working with a table from FastReport, let us add the “TfrxDBDataSet”
component and set its properties:

DataSet = Table1
UserName = 'Bio'

Finally, let us put the “TfrxReport” component on the form. Open the designer
and click the “New report” button, so that FastReport would create a blank pattern. Let us
connect a table to the report in the”Report|Data...” window.

Let us begin creating a report form. Put the “Text” object with the “Fish” text on
the “ReportTitle” band. Connect the “First level data” band to the data source (double-
click on the band and select “Bio” from the list). Let us increase the band height up to 3
cm so that the picture finds room in it. Let us put the “Text” object to the band and
connect it to the”CommonName” field using any of the methods described above. After
that, drop the “Picture” object alongside, and connect it to the “Graphic” field. To
perform this, set properties in the object inspector:

DataSet = Bio
DataField = 'Graphic'

Note, that both of these properties are of the “List” type, and that is why one can select
the required values with the help of the mouse. To find room for the picture, stretch the
object up to 4x2.5cm.

FastReport – User Manual 35

That is all. The report is finished (see the picture below):

Multi-lined text displaying

Let us revert to the previous example with fishes. In the “Biolife.db” table, there is
a “Notes” field, which contains a detailed description of each fish. Let us update our
report by adding this field into it.

At first sight, everything seems to be easy: add the “Text” object to the band with
data, connect it to the “Notes” field and set the object’s size (8x2.5 cm). If starting the
report, you will see that we receive not exactly what we expected:

FastReport – User Manual 36

However, FastReport performed just what he was asked to. The”Notes” field
contains a multi-lined text, size of which may vary. At the same time, the “Text” object,
which displays the information from this field, has fixed sizes. That is why some lines
could not place the object and were cut. What should be done in such situation?

Of course, either sizes of the window can be specified “in reserve,” or font size
can be reduced. However, this may lead to the uneconomical usage of space on the page,
due to the fact that some fishes have long descriptions, while others have short ones. In
FastReport, there are resources, which allow solving this problem.

The matter concerns the band’s ability to automatically adjust its height in order to
find room for all included objects. To perform this, we just need to enable the “Stretch”
property. However, that is not all, because an object with a longer description should be
able to stretch by itself. The “Text” object is able to manage it.

The object can automatically set its height and width in order to find room for the
whole text it contains. One can use the “AutoWidth” and “StretchMode” properties to
perform this. The “AutoWidth” property selects the object width in a way, which allows
all the lines find room without division of words. This mode is convenient when an object
has a single text line. The “Stretch” property allows to select the object’s height in a way
that the whole text finds room. The object width is not being changed during it. This
property performs listing, and you can select one of the modes in the object inspector:

smDontStretch – do not stretch an object, by default;
smActualHeight – stretch an object in order to find room for the whole text;
smMaxHeight – stretch an object so that its bottom would coincide with the bottom band
line (where the object is placed). We will examine this example a little later.

Now we are interested in the “Stretch” property of the “Text” object. Enable it in
the object context menu or set the “StretchMode = smActualHeight” property value.

FastReport – User Manual 37

Also, enable the “Stretch” band property. Start the report and make sure that everything
works in a proper way now.

As you can see, when constructing a report, FastReport fills objects with data,
stretches them with the “Stretch” option enabled, and then collates band’s height in order
to find room for all the objects. If the band “Stretch” option is disabled, the height setting
is not performed, and the band is displayed according to height specified in the designer.
If we try to disable this option, we would see that the objects with longer texts are still
stretched, although bands are not. That leads to text overlaying, since each next band is
displayed right after the previous one.

Data splitting

Let us pay attention to a peculiarity of the report with fishes: there is much blank
space at bottom of the pages. Why does it happen? When a report is constructed, the
FastReport core fills whitespace of the page with bands. After displaying each band, the
current position shifts down. When FastReport finds out that there is not enough space to
display the next band (its height is larger than white space left on the page), then a new
page is formed and band displaying continues there. This operation continues being
performed as long as there are notes in data set.

FastReport – User Manual 38

Our report contains an object with large text, and that is why the band height is
rather large. Furthermore, if a large band does not find room on a page, it is transferred to
the next one, and much unused space remains at the bottom of the page. This is shown at
the following picture:

To use paper more rationally, let us use a FastReport feature, which paragraphs
the band contents. All we need is to enable the “AllowSplit” option of the “First level
data” band. You see that there becomes less of white space at the bottom of report pages:

How does the band splitting work? There are some objects in FastReport, which
support this feature. They are the “Text,” “Line,” and “RichEdit” objects. They can be
“splitted,” while other objects cannot. When FastReport comes across the necessity of
splitting accomplishment, it performs it in the following way:

- displays the non-splittable objects, which find room on white space;
- partially displays splittable objects (text objects are displayed in a way that all lines find
room in the object);
- forms a new page and continues object displaying;
- if a non-splittable object does not find room on whitespace, it is transferred to the next
page; at the same time, all the objects located underneath, are shifted according to
transferring;
- the process continues until all the band objects are wholly displayed.

The splitting algorithm will become clearer if to look at the picture:

FastReport – User Manual 39

It should be noted, that the splitting algorithm does not provide 100% quality of
the received report. That is why you should use this option very carefully in cases when
objects on the splitted band are grouped in a complicated way, and, in addition, their font
sizes differ. Here is the example of what could be received:

Text wrap of objects

For report designing, in some cases it becomes necessary to create text wrap of
objects (often, when using pictures). Let us demonstrate this FastReport feature with the
example with fishes.

Let us add one more “Text” object to the report, and then arrange the objects as

FastReport – User Manual 40

shown in the following picture:

We will disable stretching for the “Bio.”Notes”” object. On the contrary, we will
enable this property for the bottom object. To make the text “blend” from the
“Bio.”Notes”” object to the bottom one, set the “FlowTo” property in the “Bio.”Notes””
object. This property is set in the object inspector and is of the “dropping list” type. The
bottom object’s name must be selected from this list. The result would look as shown in
the following picture:

When constructing a report, if a text does not find room in the top object, the part,
which does not fit the page, will be transferred to the bottom object. Since the objects are
located around the picture, the effect of text wrapping is performed.

Attention: the main object should be inserted to the report before inserting the
linked one. Otherwise, text wrapping may function incorrectly! If your report operates
incorrectly, select the linked object, and then transfer it to the forefront by the “Edit|Bring
to the forefront ” menu command.

FastReport – User Manual 41

Displaying data in the form of a table

Sometimes it is necessary to display a report in the form of a table with a frame.
One of the examples of such report could be any price list. To build such report in
FastReport, a user just needs to enable framing function for the objects located in the
“Data” band. Let us demonstrate several variants of frames with the test report example.

Let us create a blank project in Delphi. Put the “TTable” component to the form,
and then set its properties:

DatabaseName = 'DBDEMOS'
TableName = 'Biolife.db'

Let us add the “TfrxDBDataSet” component in order to be able to work with the
table from FastReport, and then set its properties:

DataSet = Table1
UserName = 'Bio'

Let us create a report of the following kind:

Place the objects on the band line-on-line, and minimize band’s height.

The first and the simplest type of the table is a table with a full frame. To perform
it, one needs to enable all frame lines in every object:

FastReport – User Manual 42

The next type of framing would display only horizontal or only vertical lines.
Such framing is performed in exactly the same way. Horizontal or vertical frames can be
enabled in objects.

Finally, to construct only the external framing, the report needs to be slightly
modified:

As you can see, we have added two “Text” objects and enabled frame lines for the
objects along the edges of the data-band. As a result, the report will look as follows:

FastReport – User Manual 43

All examples aforesaid contained bands, which possessed fixed sizes. But how is
it possible to display a table, in case when the band is stretched? Let us explain that, using
the example below. Add a new field (a multi-lined text from “Bio.Notes”) to our report.
As you already know, the “Stretch” property must be enabled both for this object and for
the band, in which the object is located. In this case, the band height is selected depending
on size of the text in the “Text” object. Thus, we would receive a report of the following
kind:

It is a little bit different from the one we need; one would prefer the frames of the
neighboring objects to be able to stretch as well. FastReport allows to solve this problem
easily. For constructing such reports, it is enough to enable the “Stretch downwards”
property (or StretchMode = smMaxHeight in the object inspector) for all objects, which
are to be stretched. Thus, the FastReport core firstly counts the maximum band height,

FastReport – User Manual 44

then it “stretches” objects with the enabled option to the bottom band edge. Due to the
fact that object frames stetche together with the object, the report’s appearance changes:

Printing labels

In contrast to table reports, data in reports such as “label,” are allocated one under
another. Let us examine an example of such report, which displays data about fishes (see
the previous example). The report is presented in the form of a label, and has the
following structure:

If starting execution of this report, we would receive the following:

As you can see, there is much whitespace in the right part of the page. To fill the
whole page, the number of columns, where the data will be displayed, can be set in report

FastReport – User Manual 45

page settings. To perform this, you should either doble-click on the area of white space on
the page, or call the “File Page|parameters...” menu item.

In this bookmark, one can set such column parameters, as number of columns, its width,
and position. In our case, it would be enough to specify a number = 2, since FastReport
adjusts all the rest parameters automatically. The column frame is displayed in the
designer as a thin vertical line:

At that, printing will be performed in the following way. FastReport will display
the “First level data” band as long as there is white space on the page. After that, a new
column in the very page will be formed (in contrast to simple reports, in which a new
page is created in such cases), and band would continue to be displayed on the top.
However, now all the objects are shifted to the right, according to column’s width. It will
continue until all the columns are displayed. After that, FastReport forms a new page and
continues to display data from the first column.

Our report with two columns will look as follows:

FastReport – User Manual 46

The “Columns” property, available in all data-bands, is another way to set number
of columns. It allows to set number of columns for a particular band and not for the whole
page (as it was in previous example). Thus, the principle of data displaying will be not
“from the top to the bottom, then from the left to the right,” but “from left to right, then
from top to bottom.”

Let us disable columns in the page (set the columns number = 1) and enter “2” in
the “Columns” band property. FastReport displays the column frames as dotted lines. Let
us get the required column dimensions by modifying the “ColumnWidth” property:

The report constructed in such way, would differ from the previous one only by
the “from-left-to-right, then from-top-to-bottom” order of data displaying.

Child-bands

Let us examine the case when one of the lines in a report of “label” type, may
have a variable size. To simulate the situation using our our example, let us reduce the
“Bio.”Common Name”” object width to 2.5 cm, and enable the “Stretch” option for it.
Let us also enable stretching in the “First level data” band. Enable all the frame lines in
all objects so that the principle of the stretching function would become clear. We will
receive a report of the following kind:

You see, that in the first case the first object contains a longer text, and that is why
it was stretched in two lines. Thus, the object (located underneath it and linked to the
Bio.”Length (sm)” field) was shifted down. That happens because all the objects have the
“Shift” property enabled by default (or ShiftMode = smAlways in the object inspector).

FastReport – User Manual 47

Such objects shift downwards if there is a stretchable object above them (the “Text”
object with the “Stretch” property enabled). The height value, by which the object shifts,
depends on how the object from above is stretched.

However, it is unacceptable in our case, since we need the object with the
“Length, cm.” text to be shifted as well. To perform this, there is a special band type in
FastReport, “Child-band.” It is linked to (and is displayed after) the basic band. Let us
update our report:

To link the basic component to the child one, let us set the “Child = Child1”
property in the object inspector. Now, each time you print the basic band, the child one
would be displayed as well:

As you can see, now the title is typed exactly where it is supposed to be. In order
to avoid child-band’s transfering to the next page (which basically means, it will be
separated from the basic band), enable the “Keepchild” property for the basic band
(“KeepChild” in the object inspector).

Shifting objects

You have already seen how the “Shift” property works. Let us examine the next
mode of shifting, “Shift on overlapping.” In the object inspector, the “ShiftMode=
smWhenOverlapped” property value corresponds to this mode. Thus, object shifting will

FastReport – User Manual 48

be performed in case, when the object from above overlaps the given object during
stretching. Three cases are shown in the picture below. As you see, the bottom object with
the enabled “Shift when overlapping” option shifts only in the latter case, i.e. when there
is much text in the top object and it overlaps the bottom one.

If the “Shift” option is enabled, the bottom object will be shifted anyway:

In some cases, it allows to realize rather complicated logic of object design,
especially if an object overlaps several other reports at the same time. Thus, in the
following example both of the upper objects contain stretchable texts, and the bottom one
has the enabled “shifting when blocking” option. The bottom object will always be
displayed closely to the object, which contains more text, irrespective of text size in the
upper objects:

FastReport – User Manual 49

In this example, if the “Shift” option is enabled for this object, the bottom object
will shift twice, since it is located underneath two objects and thus an unnecessary gap is
formed.

Report with two data levels (master-detail)

So far we examined reports where only one data-band was presented (“First level
data”). That enabled typing data from one DB table. FastReport allows to type reports
containing up to six data levels (it is also possible to type more levels via the “subreport”
object; this feature will be examined later). In real applications, reports with large data
applications are rarely typed. As a rule, they are limited to 1-3 levels.

Let us examine the two-leveled report creation process. It will contain data from
the DBDEMOS tables: “Customer.db” и “Orders.db.” The first table is the list of clients;
the second one is the list of orders placed by the clients. The tables contain data of the
following type:

Customer:

CustNo Company
1221 Kauai Dive Shoppe
1231 Unisco
1351 Sight Diver
….

Orders:

OrderNo CustNo SaleDate
1003 1351 12.04.1988
1023 1221 01.07.1988
1052 1351 06.01.1989
1055 1351 04.02.1989
1060 1231 28.02.1989
1123 1221 24.08.1993
….

As you can see, the second table contains the list of all the orders placed by all
companies. To receive the list of orders placed by a particular company, the notes, in
which the “CustNo” field contains the number of the chosen company, should be selected
in the table. The report constructed on such data will look as follows:

1221 Kauai Dive Shoppe
1023 01.07.1988
1123 24.08.1993

1231 Unisco

FastReport – User Manual 50

1060 28.02.1989

1351 Sight Diver
1003 12.04.1988
1052 06.01.1989
1055 04.02.1989

Let us get down to the report creation. Create a new project in Delphi, put two
“TTable,” one "TDataSource", two “TfrxDBDataSet” and one “TfrxReport” components
to the form. Set the components in the following way:

Table1:
DatabaseName = 'DBDEMOS'
TableName = 'Customer.db'

Table2:
DatabaseName = 'DBDEMOS'
TableName = 'Orders.db'

DataSource1:
DataSet = Table1

frxDBDataSet1:
DataSet = Table1
UserName = 'Customers'

frxDBDataSet2:
DataSet = Table2
UserName = 'Orders'

In the report designer, let us connect our data sources in the “Report|Data...”
window. Put the “Master data” and “Detail data” bands on the page:

Note that the “Master Data” band must be allocated above the “Detail Data” band!
If allocated under, FastReport will inform you about an error occurrence when the report
starts.

FastReport – User Manual 51

Data linkage

If starting the report now, you would see that the list of orders remains the same
for every client and contains all notes from the “Orders.db” table. That happens because
we did not enable notes filtering in the “Orders” table. Let us revert to our data sources.
Set the “MasterSource = DataSource1” property in the “Table2” component. Thus, we
have set a “master-detail” connection. After that, a condition for subordinate source notes
filtration should be established. To perform this, call the “MasterFields” property editor
of the “Table2” component:

We need to link together two “CustNo” fields in both sources. To perform this,
select the desired fields, and then click on “Add” button. Fields linkage will shift to the
bottom window. After that, close the editor and click “ОК.”

When starting a report, FastReport does the following. After allocating the next
note from the master table (Customer), it will set the filter on the subordinate table
(Orders). Only those notes, which would satisfy the “Orders.CustNo = Customer.CustNo”
condition will remain in the table. That means that for each client only his/her orders will
be displayed:

FastReport – User Manual 52

Reports, containing up to 6 data levels can be constructed in the similar way.

Headers and footers of a data band

Each data band may have header and footer. Header will be shown before printing
a data band, footer will be shown after all data records was printed. Here is an example of
how the headers/footers working in case of simple report:

Let's look at more complex example using two data levels - master-detail:

FastReport – User Manual 53

As we can see the header is printed before all data-band records. Thus master data
header is printed once at the begin of a report, detail data header is printed before each
group of detail bands bolonging to the master data band. The footer is printed after all
data records.

Using the FooterAfterEach property of the data band, we may override this
behavior. Setting this property to True (you may also use context menu of the data band,
"Footer after each row" item) will cause the footer to be printed after each data row. It
may be useful in some cases when designing master-detail reports. The previous example
with FooterAfterEach property of the master data set to True will looks this way:

FastReport – User Manual 54

Report with groups

We constructed a two-leveled report on the basis of the data from two tables in the
example above. FastReport allows constructing analogous reports on the basis of one set
of data, formed in a unique way.

To perform this, one needs to create a query using SQL language, which would
return data, arranged according to a certain condition, from both of the tables. In our case,
a condition is a correspondence of the “CustNo” fields in both of the tables. An SQL-
query may look as follows:

select * from customer, orders
where orders.CustNo = customer.CustNo
order by customer.CustNo

The "order by" line is necessary for sorting the records in the “CustNo” field. The
example below shows how the query data would be returned:

CustNo Company … OrderNo SaleDate
1221 Kauai Dive Shoppe 1023 01.07.1988
1221 Kauai Dive Shoppe 1123 24.08.1993
1231 Unisco 1060 28.02.1989
1351 Sight Diver 1003 12.04.1988
1351 Sight Diver 1052 06.01.1989
1351 Sight Diver 1055 04.02.1989

How can a multi-leveled report be constructed on the basis of this data? In
FastReport there is a special band – “Group Header”. A special condition is established
for the band (DB field value or an expression); the band is displayed as soon as the field's
value is changed. The following example illustrates this.

Let us create a new project in Delphi, put the “TQuery,” “TfrxReport,” and
“TfrxDBDataSet” components on the form. Let us set them in the following way:

Query1:
DatabaseName = 'DBDEMOS'
SQL =
 select * from customer, orders
where orders.CustNo = customer.CustNo
order by customer.CustNo

frxDBDataSet1:
DataSet = Query1
UserName = 'Group'

FastReport – User Manual 55

Let us open the designer and connect our data source to the report. After that, add
the “Group header” and “Master data” bands to the report. Set a condition (in this case, it
is “Group.CustNo” data field) in the “Group header” band editor:

Let us link data-band to the “Group” data source and place the objects in the
following way (note, that the group header must be allocated above the data-band):

On starting, we would get a report similar to the one shown below:

FastReport – User Manual 56

As you can see, the “Group header” band is displayed only when the field, to
which it is connected, changes its value. Otherwise, the data-band connected to the group
is displayed. If compare this report to the master-detail report, which we constructed
earlier, it seems to be obvious that order numbers are not sorted in ascending order. It can
be easily corrected by changing the SQL query text:

select * from customer, orders
where orders.CustNo = customer.CustNo
order by customer.CustNo, orders.OrderNo

Similarly, the reports with nested group can be constructed. At the same time, the
number of enclosures is unlimited in such reports. Thus, the reports with groups have
some advantages over the reports of the master-detail type:

- the whole report needs only one table (query);
- the number of the data enclosuring levels is unlimited;
- the additional data sorting feature;
- more rational usage of the DB resources (the query returns only the data, which should
be printed, without having to filtrate the data).

The only disadvantage is the necessity of writing queries in SQL language.
However, knowledge of SQL basis is obligatory for a programmer working with
databases.

Other group features

Let us pay our attention to how the group is transferred to the next page:

FastReport – User Manual 57

If looking through the printout of such report, it seems to be not clear, which
client the list of orders on the very top of the second page refers to. FastReport allows
repeating of group titles displaying (which in our case contains information about the
client) on the next page. To perform this, the “Reprint on new page” menu item (or the
“ReprintOnNewPage” property in the object inspector) should be enabled in the “Group
header” band. Thus, the report will look in the following way:

FastReport – User Manual 58

There is another way, which allows to avoid breaking of groups. To perform this,
the “Keep together” group header property (or “KeepTogether” in the object inspector)
should be enabled. Thus, if the whole group does not find room on the page, it is
transferred to a new page. In our example, it will look in the following way:

Thus, much blank space may appear on several pages, but the group will be
displayed as a whole on the page.

In conclusion, the “StartNewPage” group header property allows to display each
group on a separate page. This probably would lead to misuse of paper, however it might
be useful in some cases.

Lines numbering

Let us use our example in order to show how to number lines in the group. To
perform this, let us add the “Text” object with a system variable [Line] to both of our
bands (it is easier to perform this with the help of the drag&drop method in the
“Variables” bookmark of the “Data Tree” tool window).

FastReport – User Manual 59

When starting the report, we can see that both the data levels now have their
numbers:

In some reports, one might need continuous numeration of the second level data.
To perform this, we should use the “Line#” variable instead of “Line” on the data-band.
The result will be as follows:

FastReport – User Manual 60

Aggregate functions

In most cases, group reports should display some resulting information (such as:
“total of a group,” “number of group elements,” etc). There are the so-called aggregate
functions in FastReport designed for this purpose. With their help, one can count up some
function of a defined value according to data span. Below is the list of aggregate
functions:

SUM Returns the total of the expression
MIN Returns the minimal value of the expression
MAX Returns the maximal value if the expression
AVG Returns the average value of the expression
COUNT Returns the number of lines in the data span

The syntax of all aggregate functions (except COUNT) is the following (let us examine it
using the example of the “SUM” function):

SUM(expression, band, flags)
SUM(expression, band)
SUM(expression)

The parameters assignment is the following:

expression – the expression, the value of which is to be handled
band – the name of data band, on which handling of values will be performed
flags – the bit field, which can contain the following values and their combinations

1 – consider the invisible bands
2 – accumulate the value (do not reset the value during next displaying)

As you can see, an expression is the only obligatory parameter; all the rest can be
skipped. Nevertheless, it is recommended to always use band parameters, since it would
allow to avoid mistakes.

The “COUNT” function has the following syntax:

COUNT(band, flags)
COUNT(band)

The parameters assignment is similar to the one described above.

There is a general rule for all aggregate functions: a function can be counted only
for the data-band and displayed only in the band’s footer (the following bands refer to the
latter: footer, page footer, group footer, column footer, and report footer).

FastReport – User Manual 61

How do aggregate functions work? We will examine it using our example of
report with groups. Let us add new elements to the report:

The Group."ItemsTotal" field on the data-band will display the current order total.
We place the “Text” object, containing the aggregate SUM call, to the group footer. It
will display the total of all orders placed by the given client. Starting the report on
accomplishment and using a calculator, we can make sure that everything works:

So, how do the aggregate functions work? Before constructing a report,
FastReport scans the “Text” objects’ contents in order to find the aggregate functions.
The functions found will be anchored to the corresponding data-bands (in our example,
the “SUM” function in anchored to the “MasterData1” band). During construction of a
report (when the data-band is displayed) the value of the aggregate functions linked to it
is counted up. In our case, the “Group."ItemsTotal"” field’s values are accumulated. After
outputting a group footer (the one where the accumulated value of the aggregate function
is displayed) the function value is reset, and the cycle is repeated for the next groups.

Now we should comment the purpose of the “Flags” parameter in the aggregate
functions. In some reports, some of data-bands (or all of them) may be hidden, however,
we might anyway need to count a value of the aggregate function considering all data-
bands. So, in our example, the “Visible” property of the data-band can be disabled; after
that it will stop displaying. To count a total on the hidden data-band, let us add the third
parameter to the call of the function:

[SUM(<Group."ItemsTotal">,MasterData1,1)]

FastReport – User Manual 62

It will give us a report, which would look as follows:

The “Flags = 2” parameter value allows to avoid reset of the accumulated function
value right after it is displayed. This allows to receive the so-called “running total”. Let us
update the call of the function:

[SUM(<Group."ItemsTotal">,MasterData1,3)]

The “3” value is a bit combination of “1” and “2,” which means that we need to
take into consideration the invisible bands without resetting the total. As a result, we
have:

Page and report totals

Quite often, one needs to display total value of a page or a whole report. It can be
performed with the help of the aggregate functions as well. Let us examine it with the
help of our example.

FastReport – User Manual 63

As you can see, we added the “Report Summary” band and the “Text” object with
the sum to the “Report Summary” and the “Page Footer” bands. That is all we need.

FastReport – User Manual 64

Inserting aggregate function

So far we inserted the aggregate functions into the “Text” object manually. Let us
examine more convenient ways of aggregate functions insertion.

First of all, we can use the “System text” object for the aggregate function value
outputting. As a matter of fact, it is the same “Text” object, but one that has a special
editor for more convenient insertion of system variables or aggregate functions.

You should step by step select a function type, a data-band (according to which it
will be counted), and a DB field or an expression, value of which will be computed. You
can otherwise mark the “Count invisible bands” and “Running totals” flags.

The second way is to use the “Text” object and the button in its editor. At that,
the additional window, similar to the examined “System text” object editor, appears.
When clicking the “OK” button, the call of the aggregate function is inserted into the
object's text.

FastReport – User Manual 65

The aggregate function call features

In this chapter we were discussed the cases when square or angle brackets must be
used during insertion of expressions into the “Text” object. Remember that all the
expressions, being non-standard in terms of the Pascal language interpreter (which is used
for the expressions’ value calculation), should be enclosed in angle brackets. The DB
fields (access to them is performed via the special construction of the “Table name."Field
name"” kind), as well as variables from the variables list (as well as system variables) are
included in this group.

It is necessary to use angle brackets when calling the aggregate functions because
of their realization. So, the following record form is not correct:

[SUM(<Group."ItemsTotal">,MasterData1) * 2]

and this is the correct one:

[<SUM(<Group."ItemsTotal">,MasterData1)> * 2]

Let us also remember that in case, when the only member of the expression is
enclosed in square brackets, FastReport allows omitting angle brackets, which means that
both the record forms

[<SUM(<Group."ItemsTotal">,MasterData1)>]
[SUM(<Group."ItemsTotal">,MasterData1)]

are identical.

Values formatting

Draw attention to a peculiarity of use of aggregate functions: numerical values
they return are not formatted. It becomes evident when referring to the first example with
the “SUM” function:

This happens because, as a rule, the data fields return a formatted value, which is
simply displayed by the “Text” object, with no changes applied. To apply external view to
the “SUM” function result, let us use the values formatting tools of FastReport.

Let us select the object with the sum and call its contextual menu. The format
editor is called either by using the “Formatting...” menu command, or with the help of the
“DisplayFormat” property editor in the object inspector.

FastReport – User Manual 66

As you can see, the list of formatting categories and the list of the chosen category
formats are placed on the left and on the right respectively. Let us select the “Number”
category, and the "$1,234.50" format. At that, the formatting line corresponding to the
selected format and the decimal separator character will be displayed below. The
formatting line is nothing but an argument of the Delphi "Format" function, with the help
of which FastReport accomplishes formatting of numbers. You can modify a formatting
line as well as a separator.

After clicking the “ОК” button and report constructing, you might see that the
sum total in the report is correct:

Inline formatting

The examined way of formatting can be applied to any of the expressions, located
in the object. In our case, everything works correctly because there is only one expression
in the object. However, if we have two expressions and, in addition, they are of different
types?

Let us examine the following case: the total and number of orders displaying in
one object. To perform this, the following text must be placed into the object:

Total: [SUM(<Group."ItemsTotal">,MasterData1)]
Number: [COUNT(MasterData1)]

FastReport – User Manual 67

When starting, we can make sure that both of the values are presented in monetary
format (which we have set in the previous example), which is rather incorrect:

To receive correct display of values, each of them should be formatted
individually. To perform this, there are the so-called format tags. They are added before
the closing square bracket of the expression. In our example, let us disable the object
formatting (select the “Text (without formatting)” category in the format editor). Now we
need to modify the format of the first variable, since the second will definitely be
displayed correctly (without formatting, i.e. as the integer, and this would be exactly what
we need). To perform this, let us modify the object text in the following way:

Sum: [SUM(<Group."ItemsTotal">,MasterData1) #n%2,2m]
Number: [COUNT(MasterData1)]

And make sure that now the report works correctly:

Now let’s draw attention to use of tags. The general syntax is the following:

[expression #tag]

Note that space between the expression and the “#” sign is obligatory! The tag itself
might look as follows:

#nFormattingLine– the numerical format
#dFormattingLine– date/time format
#bFalse,True– boolean format

“FormattingLine” in every case is an argument for the function, with the help of which
formatting is accomplished. Thus, for numerical formatting, such function would be the
Delphi’s Format function, for date/time it is the FormatDateTime function. One can get
the possible lines’ values from the Delphi help system. Below are several values used in
FastReport:

for the numerical formatting:
%g – a number with the minimal signs number after decimal point
%2.2f – a number with the fixed number of signs after decimal point
%2.2n – a number with bits delimiter

FastReport – User Manual 68

%2.2m – a monetary format, accepted in the Windows OS, depending on the regional
settings in the control panel.

for the date/time format:
dd.mm.yyyy – date of the 23.12.2003 type
dd mmm yyyy – date of the 23 Nov. 2003 type
dd mmmm yyyy – date of the 23 November 2003 type
hh:mm – time of the 23:12 type
hh:mm:ss – time of the 23:12:00 type
dd mmmm yyyy, hh:mm – time and date of the 23 November 2003, 23:12 type

It is acceptable to place comma or dash instead of period in the line for the
numerical format. In this case, this symbol will be used as a separator between the integer
and the fractional parts of the figure. Usage of other separators is not acceptable.

As for formatting of the “#b” type (boolean), the formatting line is presented as
two values separated by comma. The first value corresponds to “False,” the second one
corresponds to “True.”

In order to avoid necessity to memorize all these tags and their meanings, there is
a convenient resource for formatting insertion in the “Text” object editor. When clicking

the button, the format editor (which we have already examined) is called. After
selecting a format, it is inserted to the text. Thus, if the cursor is placed before or after the
closing square bracket, the format is inserted correctly.

Conditional highlighting

This feature of the ”Text” object allows to color an object according to a specified
condition. Any expression can be a condition. Let us exemplify coloring by the example
with groups. Let the order totals, which are larger than 5000, be green-colored. To
perform this, select an object with the “Group."ItemsTotal"” field and click on the
“Conditional highlighting” button in the designer toolbar. In the opened conditional
highlight editor, let us enter a condition, after performing which the object will be
highlighted, and specify the color attributes (font parameters and background color).

FastReport – User Manual 69

The result will be as follows:

Pay attention to the condition we specified (Value > 5000). Value is the DB field
value, to which the object is linked. In similar way, the “<Group."ItemsTotal"> > 5000”
condition may be set. In general, any expression, which is correct in terms of FastReport,
may be specified here.

Show stripes

With the help of the conditional highlighting, it is easy to make a report look more
sophisticated by “coloring” every second data line. Let us exemplify it by the report of the
“List” type, which we constructed in the previous chapter.

First of all, let us place the “Report title” and “Master data” bands on the list. Put
the “Text” object to the data-band and stretch it, so that it would occupy practically all the
band space:

FastReport – User Manual 70

This object will perform the role of the wafer, which will modify its color
depending on the data line number. After that, we select the object and set the following
condition in the allocation editor:
<Line> mod 2 = 1
Let us select gray color for highlighting, but not too saturated (closer to white). Now other
objects can be put on the data-band:

As new objects lay on the wafer, it can easily be unnoticed. If starting a report, we
can see the following:

Multipage reports

FastReport report can consist of several pages. You can adjust such parameters as
size and orientation for each page, as well as to place different objects and bands on it.

FastReport – User Manual 71

When constructing a report, all bands from the first page will be displayed, then the bands
from the second one, etc.

When a user creates a new report in the designer, it already contains one page by
default. You can add a new page by clicking on the button in the toolbar or by
selecting the “File|New page” menu command. Then you would see that a new bookmark
appears in the designer:

One can easily switch between pages by clicking on the required bookmark.
Moreover, bookmarks can be dragged (“drag&drop”), thus easily modifying order of
pages. An unnecessary page can be deleted with the help of the button in the toolbar
or by selecting the “Edit|Delete page" menu command. One can also call the context
menu by right-clicking the bookmark:

Number of pages in a report is unlimited. As a rule, additional pages are used
either for previewing title pages, or in more complicated reports, those which contain data
from many sources.

Let us examine a simple example of title page creation. Let us use the report with
one data level, which we have built before. Add a new page to it, and thus it would be the
second page. To move it to the top of the report, seize the page bookmark with the help of
the mouse, and then drag it to the place near the first page. At that, the pages order will be
changed. Let us switch to a new page and place the “Text” object (with the “Our report”
text inside) in the middle of the page. That is all; the report with a title page is finished:

FastReport – User Manual 72

It is necessary to focus attention on one feature of multipage reports. If the “Print
to previous page” option is enabled in the second page (use the “PrintToPreviousPage”
property in the object inspector), then the second page objects will start printing not from
a new list, but on the white space of the previous one. This allows to print the pages’
contents “line-to-line.”

Nested reports (subreports)

Sometimes it is required to display in a particular place additional data, which
may represent a separate report with rather complicated structure. One can try to construct
such report by using a set of FastReport bands, but it is not always possible. In such cases,

the “Subreport” object can be used .

After inserting such object to a report, we can see that FastReport automatically
adds a new page, connected to this object. A nested report resembles a multipage one in
terms of structure. The only difference is that the nested report is displayed in a specified
place of the basic report, and not after it. When creating a report, as soon as the
“Subreport” object occurs, the report, allocated in the connected page, will be displayed.
After that, basic report creation will continue.

One can also place the “Subreport” object on a nested report page, thus increasing
enclosure level. An example of such report can be found in the demo program, the
“Subreports” report.

FastReport – User Manual 73

It should be noted that the FastReport’s ability to construct subreports enables to
increase nesting level of data. Remember that number of enclosure levels in FastReport is
limited when you do not use the “Subreport” object (not more than six).

Side-by-side subreports

You can allocate two or more “Subreport” objects side by side on the same band:

This allows to construct reports, which cannot be constructed in a different way
(i.e. when the lists of different length are displayed in each nested report):

As you can see, FastReport continues to construct the basic report, beginning from
the position, where previewing of the longer list is already finished.

Limitations on using subreports

Since nested reports are created on the basic report page, it is unable to contain the
following bands: “ReportTitle/ReportFooter,” “PageTitle/PageFooter/PageBackground,”
and “ColumnTitle/ColumnFooter.” It is possible to put these bands on the nested report
page, but they however will not be handled. For the same reason, there is no sense in
modifying nested report pages options, inasmuch as the options of basic report’s page are
used during constructing a report.

It is impossible to put objects below the “Subreport” object:

FastReport – User Manual 74

When displaying a nested report, the nested report objects will overlay everything
placed below, and a user will receive something like that:

To display the objects below the nested report anyway, use the child-band:

It also concerns cases when it is necessary to display several nested reports one
under another.

PrintOnParent option

The "Subreport" object has the "PrintOnParent" property which can be useful in
some cases. This property is False by default.

Usual subreport is printed as a set of bands on the basic report page. In this case
the parent band (which contains a "subreport" object) do not depends on the subreport
bands, i.e. can't stretch. If the "PrintOnParent" property is True (you can set it from the
object inspector or in the context menu), subreport's objects are printed physically on the
band which contains the "subreport" object. You can make this band stretched and put on
it stretched objects:

FastReport – User Manual 75

FastReport – User Manual 76

Cross-tab reports
This kind of report has table structure, which means that it consists of lines and

columns. At the same time, it is not known beforehand, how many lines and columns a
table would possess. That is why a report grows not only downwards (as the report types
examined above) but sideways as well. A typical example of a report of such type is
shown below.

Let us examine the elements of the table:

In the picture, we see a table with two lines and four columns, where “a” and “b”
are line titles, “1,” “2,” “3,” and “4” are column titles, and “a1”..”a4,” “b1”..”b4” are
cells. To construct a report like this, we need just one set of data (a query or a table),
which has three fields and contains the following data:

a 1 a1
a 2 a2
a 3 a3
a 4 a4
b 1 b1
b 2 b2
b 3 b3
b 4 b4

As you can see, the first field contains a line number, the second one have a
column number, and the third one contains the cell contents at intersection of the table
with the selected number. When constructing a report, FastReport creates a table in
memory and fills it with data. Thus, the table expands dynamically, if a line or a column
with a specified number does not exist.

Titles can consist of more than one level. Let us examine the following example:

In this example, the number, or index of the column is composite, i.e. it consists of
two values. This report requires the following data:

FastReport – User Manual 77

a 10 1 a10.1
a 10 2 a10.2
a 20 1 a20.1
a 20 2 a20.2
b 10 1 b10.1
b 10 2 b10.2
b 20 1 b20.1
b 20 2 b20.2

In this example, the first field contains the line index, as it was before; the second
and the third fields contain column indexes. The last field contains the cell value. Let us
examine the following picture in order to make it clear, how FastReport constructs a
tables with complex titles:

Before handling is accomplished, our table would look like the table shown in the
picture. During handling, FastReport unites the title cells with equal values, which are
allocated on one level.

The next table element, which is shown in the following picture, displays
intermediate totals and totals:

This report is constructed using the same data, as were used in the previous one.
The columns, highlighted with gray in the picture, are calculated automatically and are
not included into the initial data set.

Construct a cross-report

Now let us turn from theory to practice. Let us construct a simple cross-report,
which would display employees’ salary during four years. To perform this, we need the
“simplecross.db” table, which is available in the FastReport “DEMOS\CROSS\DATA”
folder. The table contains data of the following kind:

FastReport – User Manual 78

Name Year Salary
Ann 1999 3300
Ben 2002 2000
….

As usually, let us create a new project in Delphi, put the “TTable,”
“TfrxDBDataSet,” and “TfrxReport” components on the form and set them:

Table1:
DatabaseName = 'c:\Program Files\FastReport3\Demos\Cross\Data'
TableName = ' simplecross.db'

the DatabaseName property value of course must correspond with the path to your folder
with FastReport!

frxDBDataSet1:
DataSet = Table1
UserName = 'SimpleCross'

For cross-reports construction, one should use the “TfrxCrossObject” component

 from the FastReport component palette. Just put it on the form; it is not required to
set anything. At the same time, the “frxCross” unit, which contains all necessary
functionality, will be added to the "uses" list.

Let us enter the report designer. First of all, connect our data source to the
“Report|Data…"menu. Put the “DB cross-tab” object on the report list:

On the designer list the object looks lowly:

FastReport – User Manual 79

All settings are specified with the help of the object editor. Let us call it by
double-clicking on the object:

The following items are denoted by figures in the picture:

1 – the drop-down list with available data sources;
2 – the list of fields in the selected data source. The fields from this list can be dragged to
the “4,” “5,” and “6” lists;
3 – here one can specify whether it is necessary to display titles and totals;
4 – the list of fields, which generate a line title;
5 – the list of fields, which generate a column title;
6 – the list of fields, which generate a table cell;
7 – here the future table structure is previewed. All the elements in the table are clickable;
8 – toolbar for modifying table design:

 - table style select;

 - cell font parameters;

 - text alignment;

 - text rotation;

FastReport – User Manual 80

 - conditional highlighting;

 - cell format;

 - cell frame and filling.

As you can see, it is possible to operate here only with the help of the mouse. In
our case, it is enough to drag fields from the “2” list to the “4,” “5,” and “6” lists, as it is
shown in the picture. Let us not do anything yet. Close the editor by clicking the “ОК”

button . If starting the report now, you would see a table like the one below:

Well, it is exactly what we wanted to receive. Let us continue examining the
object. Call the object editor once again. The first thing we want to perform is to modify
the titles’ colors and to display “Total” instead of “Grand total.” It is very easy to perform
when using the bottom editor field (N7 in the picture). Here the cross-table structure is
displayed, and it can also be set with the help of the mouse. The active call is displayed
with an orange frame:

To change the title color into gray, click on the “Year,” “Name,” and “Grand

Total” objects one after another, and then select the desired color via the button in the
toolbar. To change the “Grand Total” inscription, double-click on the cell, and then you
will see the familiar text editor, where one should type “Total.” After that, our report will
look as follows:

FastReport – User Manual 81

It remains to set a format, where the currency values are displayed. To perform
this, in the cross-object editor, click on the “Total” object and the object, representing a
cell (with the “0” text) one after another and select the required format by clicking on the

 button in the toolbar. You will get the following result:

Using functions

In our example, we previewed the sum total of each employee’s salary during four
years in the “Total” line. One can use the following functions:
SUM – sum of values
MIN – minimal value
MAX – maximal value
AVG – average value
COUNT – number of values

Let us try to use the “MIN” function in our example. To perform this, open the
cross-object editor and click on the "Salary" field in the area of the item with down arrow.

Select the “MIN” function in the menu. Now one can modify a text in the cell of
totals from “Total” to “Minimum.” A finished report will look as follows:

FastReport – User Manual 82

Sorting values

Lines and columns values are arranged in ascending order. At that, if values have
numerical type, they are sorted by value, and if they have line type, they are sorted
alphabetically. We can separately set our own sorting mode for each line and/or column
value. The following modes are available: “arrange in ascending order,” “arrange in
descending order” and “perform no sorting.” In the latter case, values in lines/columns
will be displayed depending on their entries.

Let us modify column sorting in our example. Let years be arranged in decreasing
order. To perform this, let us enter the cross-object editor and select the “Year” column
element. To modify sorting, click on the area of the item with down arrow:

After that, close the editor and start the report. It will look as follows:

Table with composite headers

Our previous example contained one value per line, and column headers. Let us
examine in practice the table construction with a complex header, which means that it
would contain two or more values. To perform this, we would need the “cross.db” table,

FastReport – User Manual 83

which is located in the FastReport “DEMOS\CROSS\DATA” folder. The table contains
data of the following kind:

Name Year Month Days Salary
Ann 1999 2 3 1000
Ben 2002 1 5 2000
….

As you can see, this table data is similar to the “simplecross.db” table, which we
used in the previous example. We have added the “Month” and “Days” fields, which
contain month number and the number of working days respectively. One can construct
several reports on the basis of this data, for example, salary of all the employees during
all years, burst by months.

Let us create a new project in Delphi, put the “TTable,” “TfrxDBDataSet,” and
“TfrxReport” components on the form, and set them:

Table1:
DatabaseName = 'c:\Program Files\FastReport3\Demos\Cross\Data'
TableName = 'cross.db'

Of course, the DatabaseName property value must correspond to the path to your folder
with FastReport!

frxDBDataSet1:
DataSet = Table1
UserName = 'Cross'

In the report designer, we do usual things: connect the data source using the
“Report|Data…” window, and then put the “DB cross-table” object to the report list. To
set the cross-object, let us start its editor by double-clicking on the object.

What kind of a report we are going to get? It must resemble the report from the
previous example, but at the same time it must be burst by months. Consequently, the
cross-object must be set in the same way, but with adding the “Month” field into the
column header:

FastReport – User Manual 84

Thus, in the bottom part of the editor the future report structure is displayed:

As a result, we would get the following report:

Note, that FastReport automatically added a column of the intermediate totals,
which are displayed after each year. This option can be set in the cross-object editor: it is
enough to select the “Year” column element and disable the “Subtotal” flag:

In addition, one can note that there is no intermediate total in the bottommost
column element (the same is true in cases, when this element is the only one). Actually, in
our example, we do not need intermediate totals for each month.

Let us examine another feature, concerning intermediate totals. In our example, it
is desirable to display “2000 year total” instead of the “Total” inscription. It is quite easy
to be performed. Enter the cross-object editor, select the required object in the bottom
part of the editor, and then enter the following text to it:
Total for [Value]
During construction, the “Value” expression will be replaced by the table inscription
value, located above:

FastReport – User Manual 85

Adjusting cell width

When looking at the previous picture, it becomes obvious that FastReport
automatically adjusts cells width in a way, which allows the longer lines to fit the cells. It
is not desirable in some cases however, since the table with very long lines becomes not
good-looking. What can be done in such case? The simplest way is to break lines in the
text of object with intermediate totals, i.e. to insert a line into it:

Total
for[Value]

You see that the table looks better now:

However, not always such method can be used. If the lines’/columns’ values are
rather long, they cannot be corrected by breaking the line manually. That is why the cross-
object has the “MinWidth” and “MaxWidth” properties (minimal and maximal cell width
respectively). Both these properties are accessible only via the object inspector.

The “MinWidth” value is “0,” and the “MaxWidth” value is “200” by default.
This is quite enough in most cases. You can set your values, according to any special
requirements concerning table design.

Thus, in our example, we can set the following: MinWidth = MaxWidth = 50.
This would signify that table cell width must be 50 pixels at any rate. If a cell is smaller,
it is “adapted” to the “MinWidth” value, if it is bigger, its width is fixed according to the

FastReport – User Manual 86

“MaxWidth” value, and the text in the cell is divided. In our example, it would look as
follows:

Font colors and highlighting

Sometimes it is necessary to highlight values and/or change font color. We have
examined such task in the example of a report with groups. Then, we used conditional
highlighting for the “Text” object, which can be useful for us now as well.

Let us examine process of highlighting, using our example. Assume that we need
to change font color for the values, which are more than 3000. To perform this, let us
enter the cross-object editor and click on the object, representing the table cell, in the
bottom of the editor window:

To set highlighting parameters, click on the button in the toolbar. The already
familiar highlighting editor window will open, where one should set the following
condition:

Value > 3000

This is all we need. Close the editor with the help of the “OK” button and start our report:

FastReport – User Manual 87

In exactly the same way, a user is able to highlight total values, columns and lines,
if necessary.

Managing a cross-table from the script

If setting table visual resources are not enough, one can use the script for detailed
settings for the appearance of the table. The “Cross-table” object has the following
events:

Event Description
OnAfterPrint Event is called after printing a table.

OnBeforePrint Event is called before printing a table

OnCalcHeight Event is called before calculating length of a row in
the table. The event handler can return either the
required value of height, or “0” when the row
needs to be hidden.

OnCalcWidth Event is called before calculating column’s width
in a table. The event handler can return either the
required value of width, or “0” when the column
needs to be hidden.

OnPrintCell Event is called before displaying a table’s cell. The
event handler can modify the cell’s design or its
contents.

OnPrintColumnHeader Event is called before displaying a title of the
table’s columns. The event handler can modify
design or contents of the title’s cell.

OnPrintRowHeader Event is called before displaying a title of the
table’s rows. The event handler can modify design
or contents of the title’s cell.

It is convenient to use the following methods of the “Cross-table” object in events:

Method Description

FastReport – User Manual 88

function ColCount: Integer Returns the number of columns in a table.

function RowCount: Integer Returns the number of rows in a table.
function IsGrandTotalColumn
(Index: Integer): Boolean

Returns “True,” if the column with specified
number is the total one.

function IsGrandTotalRow
(Index: Integer): Boolean

Returns “True,” if the row with specified
number is a total one.

function IsTotalColumn
(Index: Integer): Boolean

Returns “True,” if the column with specified
number is a column with intermediate totals.

function IsTotalRow
(Index: Integer): Boolean

Returns “True,” if the line with specified
number is a line with intermediate totals.

procedure AddValue(const
Rows, Columns, Cells:
array of Variant)

Adds a value to the table.

Let us exemplify, how one can highlight the third column (in our example it is the
“November 1999” date). To perform this, select a cross-table and create the OnPrintCell
event’s handler:

procedure Cross1OnPrintCell(Memo: TfrxMemoView;
 RowIndex, ColumnIndex, CellIndex: Integer;
 RowValues, ColumnValues, Value: Variant);
begin
 if ColumnIndex = 2 then
 Memo.Color := clRed;
end;

We will see the following result:

To highlight a column title, create an “OnPrintColumnHeader” event’s handler:

procedure Cross1OnPrintColumnHeader(Memo: TfrxMemoView;
 HeaderIndexes, HeaderValues, Value: Variant);
begin
 if (VarToStr(HeaderValues[0]) = '1999') and
 (VarToStr(HeaderValues[1]) = '11') then
 Memo.Color := clRed;
end;

Result would appear as follows:

FastReport – User Manual 89

Let us explain how the scripts work. The “OnPrintCell” event handler is called
before printing a cell included in the table’s body (when printing cells from the table title,
either the “OnPrintColumnHeader,” or the “OnPrintRowHeader” handler is called). At
the same time, a link to the “Text” object, which represents a table’s cell (“Memo”
parameter), and the cell’s “address” in two variants: the number of row, column and cell
(the last is relevant, if your table contains multi-leveled cells) in the “RowIndex,”
“ColumnIndex,” and “CellIndex” parameters respectively, are transmitted into the
“OnPrintCell” handler. The “RowValues” and the “ColumnValues” parameters are the
second variant of the “address.” The “Value” parameter is the cell’s contents.

To specify an “address,” you can use the second variant (RowValues,
ColumnValues), since it is more convenient in the given case (as well as the first one
(RowIndex, ColumnIndex)). In our case, it was necessary to highlight the third column;
therefore, it would be more convenient to analyze the first variant. Since numbering of
columns and rows begins with “0,” the “ColumnIndex = 2” checking allows us to define
the third column. One could do it in a different way, i.e. by analyzing the required column
by its data (we need the 11th month of 1999):

procedure Cross1OnPrintCell(Memo: TfrxMemoView;
 RowIndex, ColumnIndex, CellIndex: Integer;
 RowValues, ColumnValues, Value: Variant);
begin
 if (VarToStr(ColumnValues[0]) = '1999') and
 (VarToStr(ColumnValues[1]) = '11') then
 Memo.Color := clRed;
end;

Values, which are transferred in the “RowValues” and the “ColumnValues”
parameters, are arrays of the “Variant” type with a zero base. The zero element is a value
of the highest level of the table’s title; the first one is a value of the next level, etc. In our
case, the “ColumnValues[0]” contains years, and the “ColumnValues[1]” contains
months.

Why is “VarToStr” transformation necessary? This guarantees absence of
mistakes during type conversion. When operating with the “Variant” type, Delphi
attempts to automatically cast the strings to number format, which, in its turn, can lead to
an error when attempting to cast the “Total” and “Grand Total'” columns’ values.

FastReport – User Manual 90

The “OnPrintColumnHeader” event handler is called during typing column title
cells. The set of parameters is similar to the parameters of the “OnPrintCell” handler,
although in this case the cell’s “address” (the “HeaderIndexes” and “HeaderValues”
parameters) is transferred in a different way. The “HeaderValues” parameter returns the
same values, as the “ColumnValues” and “RowValues” parameters in the “OnPrintCell”
handler. The “HeaderIndexes” parameter is also an array of values of the “Variant” type,
which contains an address of the title’s cell in a different form: the zero element is the
serial number of the highest level of the table’s title, the first one is the number of the
next level, etc. To make the principle of cells numbering clear, refer to the picture below:

In our case, it is more convenient to analyze the “HeaderValues” value, but one
can write the following handler as well:

procedure Cross1OnPrintColumnHeader(Memo: TfrxMemoView;
 HeaderIndexes, HeaderValues, Value: Variant);
begin
 if (HeaderIndexes[0] = 0) and (HeaderIndexes[1] = 2) then
 Memo.Color := clRed;
end;

Adjusting rows/columns size

The user can adjust width and height of the table’s rows and columns with the
help of the “OnCalcWidth” and “OnCalcHeight:” events’ handlers. Let us show how to
increase width of the column, which corresponds to the 11th month of 1999 by the
following example. To perform this, let us create the “OnCalcWidth” event’s handler:

procedure Cross1OnCalcWidth(ColumnIndex: Integer;
 ColumnValues: Variant; var Width: Extended);
begin
 if (VarToStr(ColumnValues[0]) = '1999') and
 (VarToStr(ColumnValues[1]) = '11') then
 Width := 100;
end;

And the result would look as follows:

FastReport – User Manual 91

In our example, to hide a column, it is enough to return the Width := 0. Note, that
the sums are not recalculated at the same time, since the matrix is already full of values
by this moment.

Filling a table manually

As you already know, there are two versions of the cross-table: the “DB cross-
table” and the “Cross-table.” All this time we’ve been working with the first object
attached to the data from the DB table and fills itself automatically, as soon as the report
runs. Let us examine the second object, “Cross-table.”

This object is not attached to the data from DB. Therefore, you are to fill the table
with data manually. This object possesses a similar editor, but you would have to select
the number of dimensions in the table’s titles and in its cells instead of DB fields:

FastReport – User Manual 92

Let us demonstrate operating with the “Cross-table” object with an example. Put
an object on the list of the report and set it in a way, as it is shown in the previous picture:
the number of levels in the strings’ title is “1,” in the columns’ title – “2,” in the cell –
“1.” To fill the table with data, let us use the “OnBeforePrint” object’s event handler:

procedure Cross1OnBeforePrint(Sender: TfrxComponent);
begin
 with Cross1 do
 begin
 AddValue(['Ann'], [2001, 2], [1500]);
 AddValue(['Ann'], [2001, 3], [1600]);
 AddValue(['Ann'], [2002, 1], [1700]);
 AddValue(['Ben'], [2002, 1], [2000]);
 AddValue(['Den'], [2001, 1], [4000]);
 AddValue(['Den'], [2001, 2], [4100]);
 end;
end;

In the handler, it is necessary to add the required data into the table via the
“TfrxCrossView.AddValue” method. This method has three parameters; each of them is
an array of values of the “Variant” type. The first parameter is the row's value, the second
one is the column’s value, and the third one contains the cells’ values. Note that the
number of values in each array should correspond to the object’s setting! In our case, the
object has one level in the rows' title, two levels in the columns’ title, and one level of
cells. Therefore, we transfer one value for rows, two values for columns, and one value
for cells into the AddValue.

When running the report, we would see the following:

One can use the “AddValue” method for the “DB cross-table” object as well. This
allows adding the data (which are not in the data source attached to the object) into the
cross-table. Otherwise, if there are such data, they are summarized with the data in the
table.

FastReport – User Manual 93

Diagrams
FastReport allows to insert diagrams into the report. For this purpose, the

“TfrxChartObject” object from the FastReport component palette is used. The
component is based on the “TeeChart” library, which is included in Delphi distribution
kit. One can also use the “TeeChartPro” library, which can be obtained separately.

Let us illustrate a simple construction of a diagram using the following example.
To perform this, we would need the “country.db” table from the “DBDEMOS” demo
database distribution kit. The table contains data about countries, their area and
population:

Name Area Population
Argentina 2 777 815 32 300 003
Bolivia 1 098 575 7 300 000
….

Let us create a new project in Delphi. Put the “TTable,” “TfrxDBDataSet,” and
“TfrxReport” components on the form and then customize them:

Table1:
DatabaseName = 'DBDEMOS'
TableName = 'coutry.db'

frxDBDataSet1:
DataSet = Table1
UserName = 'Country'

Let us enter the report designer and connect the data source in the “Report|
Data…” window. After that, put the “Diagram” object to the report list:

Let us set the object size (18x8 cm). To customize the object, call its editor by
double-clicking on it.

FastReport – User Manual 94

The following items are denoted by figures in the picture:
1 – diagram structure. Diagram can contain either one or several series.
2 – object inspector, which displays the properties of the element selected in the window.
Thus, you can perform tweaking of the diagram properties.
3 – toolbar for connection the series to data; it is activated as soon as the series in the
window 1 are selected.

During the first activation, the editor window will contain an image shown in the
picture. The first thing to be done is to add one or several series (one series in our

example). To perform this, click the button and select the pie diagram in the menu:

FastReport – User Manual 95

As you can see, there are eight different types of series available. After adding the
series, the bar 3 becomes active. Here you should specify, which data should be used for
plotting. First of all, let us select the data set in the “Data set” pulldown. Fill the “X
values” and “Y values” fields in the following way (they can also be selected from the
pulldowns):

It is necessary to note here, that X-axis values can be of any type (string, for
example), since they are informational. However, the Y-axis values must rigorously be of
figure type. In our case (with circle diagram) the X-axis values are used for comments of
inscriptions displaying, while only the Y-axis values are used for the diagram
construction.

Let us close the setting (click “OK” to close the editor), and then start report
construction:

What can be improved in this report? First of all, it would be nice to sort values in
descending order. Again, we enter the diagram editor and select the series in the upper
part of the window. Now we select the required sorting mode:

FastReport – User Manual 96

If starting the report now, we would see that the data in the explaining table is
sorted.

Limitation of number of diagram values

Our diagram looks rather overloaded, since there are too many small values in the
diagram, which are invisible anyway. FastReport allows limiting the values number in a
diagram by a predefined value. Thus, all the values, which do not belong the limit set,
would be displayed as a single value, representing the sum of values, which did not fit the
diagram.

In our example, the diagram has 18 values, and only 8 of them can be displayed.
Let us enter the editor and set limiting:

The limiting will work if the “TopN” is nonzero. The name in the “TopN title,”
which will be displayed opposite to the sum value, should be specified. Sorting mode is
not significant; values will be sorted by default.

As a result, the report will look as follows:

Some useful settings

Let us examine several sets, which can be useful for setting diagram appearance.
These settings can be specified in the object inspector only.

FastReport – User Manual 97

The following basic properties are available when selecting a diagram in the top
of the list:

- Gradient – settings for gradient background filling. Enable the “Gradient.Visible”
property for gradient displaying.
- Legend – settings for explanatory table appearance. The table can be disabled with the
help of the “Legend.Visible” property. The table position is set with the help of the
“Legend.Alignment” property.

The following properties are available when selecting a series:

- ColorEachPoint – color each value with different colors.
- ExplodeBiggest – select the largest value (only for the series of the “circle diagram”
type.
- Marks – settings for the explanatory hints appearance.
- ValueFormat – the line for formatting values.

Diagram with specified values

In the previous example, we constructed a diagram on the basis of the DB table
data. There is another way of constructing a diagram: to enter the necessary data
manually. This way is convenient when constructing small diagrams.

Let us demonstrate how it works with a simple example. Put a diagram to the
report list and enter its editor. Add the series of the “column diagram” type and set its
properties:

The result can also be viewed in the designer, without staring the report:

FastReport – User Manual 98

FastReport – User Manual 99

Script
Script is a program written in a higher-level language, which is a part of a report.

As a report runs, the script runs as well. A script is able to perform data handling, which
cannot be performed via regular means of the FastReport core, for example, to hide
useless data according to any predefined condition. The script is also used for controlling
properties of dialogue forms, which are the components of the report.

The script should be written using one of the languages, which are the
components of the script engine (FastScript). Currently, the following languages are
supported:

- PascalScript
- C++Script
- BasicScript
- JScript

The following FastScript features available in the script engine:
- standard language set: variables, constants, procedures, functions (with nesting
capability) with variables, constants, default parameters, all standard operators (including
case, try, finally, except, with), types (integral, fractional, logical, character, line,
multidimensional arrays, set, variant), classes (with methods, events, properties, indexes,
and default properties);
- declarations of the following types absent: records, classes in the script; no records, no
pointers, no sets (however, the 'IN' - "a in ['a'..'c','d']" operator usage is possible), no
shortstring type, no unconditional jump (GOTO);
- types’ compatibility checking;
- ability to access any report’s object.

You can create scripts in the FastReport designer, which contains the scripts’
editor with syntax’s highlighting. Also there is an embedded debugger, which possesses
the following functions: “Step,” “Breakpoint,” “Run to cursor,” and “Evaluate.”

FastReport – User Manual 100

Taste of script

Tools for working with the script are located in the “Code” tab of the FastReport
editor. When switching to this tab, the designer appears as follows:

In the picture above, the figures denote:

1 – “Code” tab;
2 – script’s editor window;
3 – a dropdown for selecting a language, in which the script is to be written;
4 – debugger’s toolbar:

 - run report in debugging mode;

 - perform the regular code line (Step into);

 - interrupt script’s work;

 - preview expressions’ evaluation (Evaluate).

5 – bookmarks and breakpoints are displayed in this field; in addition, the lines,
possessing the executable code are highlighted there;
6 – you can also use the buttons in the basic toolbar:

 - cut text;
 - copy text;

FastReport – User Manual 101

 - paste text;
 - undo the previous action.

Below there is the list of the keys, which can be used in the script editor.

Key Meaning
Cursor arrows Move the cursor
PageUp, PageDown Go to the previous/next page
Ctrl+PageUp Go to the beginning of the text
Ctrl+PageDown Go to the end of the text
Home Go to the beginning of the line
End Go to the end of the line
Enter Go to the next line
Delete Delete the symbol at cursor’s position; delete the selected text
Backspace Delete the symbol to the left from the cursor
Ctrl+Y Delete the current line
Ctrl+Z Undo last action (up to 32 events)
Shift+Cursor arrows Select a text block
Ctrl+A Select the whole text
Ctrl+U Shift the selected block by 2 symbols to the left
Ctrl+I Shift the selected block by 2 symbols to the right
Ctrl+C, Ctrl+Insert Copy the selected block to the clipboard
Ctrl+V, Shift+Insert Paste the text from the clipboard
Ctrl+X, Shift+Delete Cut the selected block to the clipboard
Ctrl+Shift+<number> Set a bookmark with the 0..9 number on the current line
Ctrl+<number> Jump to the set bookmark
Ctrl+F Search a line
Ctrl+R Replace a line
F3 Repeated search/replacement from the cursor’s position
F4 or F5 Set the breakpoint and script’s running (Run to cursor)
Ctrl+F2 Reset the program
Ctrl+F7 Preview variables’ values (Evaluate)
F9 Run the script (Run)
F7 or F8 Execute code line (Step into)

FastReport – User Manual 102

Structure of a script

Script’s structure depends on the language you use; however there are some
common elements. They are the script’s title, body, and the main procedure, which will
be executed when the report runs. Below there are examples of the scripts for all four
supported languages:

PascalScript’s structure:

#language PascalScript // optional
program MyProgram; // optional
// the “uses” chapter should be located before any other chapter
uses 'unit1.pas', 'unit2.pas';
var // the “variables” chapter can be placed anywhere
 i, j: Integer;

const // “constants” chapter
 pi = 3.14159;

procedure p1; // procedures and functions
var
 i: Integer;

 procedure p2; // nested procedure
 begin
 end;
begin
end;
begin // main procedure.
end.

C++Script’s structure:

#language С++Script // optional
// the “include” chapter should be placed before any other chapter
#include "unit1.cpp", "unit2.cpp"
int i, j = 0; // the “variables” chapter can be placed anywhere
#DEFINE pi = 3.14159 // “constants” chapter
void p1() // functions
{ // no nested procedures
}
{ // main procedure.
}

FastReport – User Manual 103

JScript’s structure:

#language JScript // optionally
// the “import” chapter should be before any other chapter
import "unit1.js", "unit2.js"
var i, j = 0; // the “variables” chapter can be located
anywhere

function p1() // functions
{ //
}
 // main procedure.
p1();
for (i = 0; i < 10; i++) j++;

BasicScript’s structure:

#language BasicScript // optionally
// the “imports” chapter should be located before any other chapter
imports "unit1.vb", "unit2.vb"
dim i, j = 0 // the “variables” chapter can be placed anywhere
function p1() // functions
{ //
}
 // main procedure.
for i = 0 to 10
 p1()
next

More detailed description of the FastScript script engine can be found in its
documentation. The author did not duplicate the following moments in the manual:
- syntactic diagrams of all the supported languages;
- supported data types;
- operations with classes, properties, methods, and events;
- nested functions;
- enumerations and sets.

Later, we will examine examples of scripts written in “PascalScript” language. As
soon as a new report is created, this language is selected by default.

"Hello, World!" script

FastReport – User Manual 104

We have already examined an example of the "Hello, World!" report; now let us
view, how to create a simplest script, which would display a window with a greeting.

Let us create a blank project in Delphi. Put the “TfrxReport” component to the
form. Enter the designer and click on the “New report” button for FastReport to
automatically create a blank template. Switch to the "Code" bookmark and write the
following script:

begin
 ShowMessage('Hello, World!');
end.

After that, run the report. As we expected, FastReport displays a little window
with a greeting:

Let us explain some details. We created a script consisting of a single “begin..end”
block. Thus, our script has a very simple structure; it consists of a main procedure only
(see the “Structure of a script” chapter). The main procedure is executed as soon as the
report runs. In our case, it displays a greeting window; the procedure ends right after the
window is closed. After the main procedure finished, report building starts.

Using objects in the script

One can address any report’s object from the script. So, if there are, say, the
“Page1” page and the “Memo1” object, one can use them in the script, calling them by
names, for example:

Memo1.Color := clRed

The list of the report’s objects available from the script is displayed in the “Report
tree” service window. What objects’ properties are available in the script? The answer is
simple: those ones, which are visible in the objects’ inspector. At the same time, at the
bottom of the inspector, there is a hint concerning the selected property. Both windows
(report’s tree and inspector) are available during working with the script. To get a detailed
help about objects’ properties and methods, use the FastReport help file, which is
included in distribution kit.

FastReport – User Manual 105

Let us demonstrate the aforesaid with a simple example. Put the “Text” object
with the “MyTextObject” name and the “Test” text into the report’s page. Then write in
the script:

begin
 MyTextObject.Color := clRed
end.

Run the report and see that our object’s color became red.

Calling the variables from the report’s variables list

One can call any variable, which is specified in the list of the report’s variables
(“Report|Variables..." menu item), from the script. Variable’s name thus should be
enclosed in angle brackets:

if <my variable> = 10 then ...

An alternative way is to use the “Get” function:

if Get('my variable') = 10 then ...

Modification of such variable’s value is available only via the “Set” procedure:

Set('my variable', 10);

One should address the system variables, such as “Page#,” in exactly the same
way:

if <Page#> = 1 then ...

Calling the DB fields

Just as in case with variables, one should use angle brackets for calling the DB
fields:

if <Table1."Field1"> = Null then...

And just as well, one can use the “Get” function (as a matter of fact, this function
is always used in implicit way for calculating expressions, enclosed in angle brackets).

Using aggregate functions in the script

FastReport – User Manual 106

Unlike other functions, one should call the aggregate functions (“SUM,” “MIN,”
“MAX,” “AVG,” and “COUNT”) either using angle brackets, or via the “Get” function
(see the “Features of calling the aggregate function” section):

if <Sum(<Table1."Field1">, MasterData1)> > 10 then...

Another feature of an aggregate function is that it should be used inside the “Text”
object; one can call it in the script afterwards. If the aggregate function is used in the
script only (without using it in the “Text” object), an error message will appear. That
happens due to the fact that an aggregate function must be connected with a definite band,
and only then it would work correctly.

Displaying the variable’s value in a report

To display the contents of any script variable in a report, one should describe this
variable and bind a value to it. Here is a simple example of the script:

var
 MyVariable: String;
begin
 MyVariable := 'Hello!';
end.

The variable’s value can be displayed in the “Text” object, for example, by
placing the [MyVariable] line into it.

A variable’s name should be unique, which means that it should not coincide with
the names of the report’s objects, standard functions, and constants. If there is an error in
the script, a message will be displayed, and report construction process will be stopped.

Events

So far we have examined scripts with only one main procedure, which is
performed when a report starts running. In the main procedure, one can perform any
initial settings, as well as to initialize variables. However, this is not enough for total
control over the process of report's forming. To control a report as much as possible,
every report's object has several events, to which a handler (i.e. a procedure from the
script) may be assigned. For example, in the handler, connected to the data-band, one can
perform records' filtering, which means that the band will be hidden or displayed
according to any specified conditions.

Let us demonstrate the process of creation of a report and of events, which are
generated during it, with the example of a simple report, which contains one page, one
"Master data" band, and two "Text" objects on the band:

FastReport – User Manual 107

As it was said, the main script's procedure is called in the very beginning of a
report. After that, the essential process of report construction starts. In the beginning of
the report, the “OnStartReport” event of the "Report" object is called. Before the page is
being formed, the “OnBeforePrint” page event is called. This event is called once for each
page of the report's template (it should not be confused with the pages of a finished
report!). In our case, the event is called once, as the report's pattern consists of one page,
notwithstanding the number of pages in the finished report.

Then typing of data-bands begins. It is performed in the following way:
1. the “OnBeforePrint” band's event is called;
2. the “OnBeforePrint” events of all the objects, belonging to the band, are called;
3. all the objects are filled with data (in our case with values of the “Company” and
“Addr1" DB fields); after that, the “OnAfterData” events of all the objects are called;
4. such actions as positioning of objects on the band (if there are stretchable objects
among them), calculating of the band's height, and stretching (if it is stretchable) are
performed;
5. the “OnAfterCalcHeight” band's event is called;
6. a new page is formed, if the band does not find room in white space of the page;
7. the band and all of its objects are displayed on the finished report's page;
8. the “OnAfterPrint” event of all the band's objects is called;
9. the “OnAfterPrint” event of the band itself is called.

Bands are printed as long as there are data in the source connected to the band.
After that, in our case, forming of a report stops; the “OnAfterPrint” report's page events
and, finally, the “OnStopReport” event of the "Report" object are called.

Thus, via using events of different objects, one can manage practically each
moment of report's forming process. A key to correct use of events is complete
understanding of the bands' typing process, stated in nine latter sections. Thus, most of
the actions can be performed via using the “OnBeforePrint” band's event only; any
modifications made to an object are displayed simultaneously. However, in this event it is
impossible to analyze, in which page the band will be printed, if it is stretchable, since
calculation of band's height will be performed in the step 4. This can be performed either
via the “OnAfterCalcHeight” event in the step 5, or the “OnAfterPrint” event in the step
8, but in the latter case a band will be already printed and that is why any operations with
objects will change nothing. In a word, you should clearly see, in what period of time
each of the events should be called and use those events, which correspond to the set task.

Example of using the “OnBeforePrint” event

FastReport – User Manual 108

Let us show the aforesaid in practice. Let us create a report, which represents the
list of clients. This report will include only those companies, which names begin with the
letter “A.”

Let us create a new project in Delphi, put the “TTable,” “TfrxDBDataSet,”
“TfrxReport” components to the form and set them:

Table1:
DatabaseName = 'DBDEMOS'
TableName = 'customer.db'

frxDBDataSet1:
DataSet = Table1
UserName = 'Customers'

Enter the report’s editor and create a report of the following type:

Let us extract a data-band and switch to the “Events” bookmark in the objects’
inspector:

To create the “OnBeforePrint” event’s handler (this is exactly what would be most
appropriate to us), double-click on the blank field in front of the event’s name:

At the same time, a blank handler is being added to the script’s text, and the
designer switches to the “Code” bookmark:

FastReport – User Manual 109

As you can see, everything operates in a similar way as in Delphi environment.
The only thing we should do after that is to write the following code in the handler’s
body:

if Copy(<Customers."Company">, 1, 1) = 'A' then
 MasterData1.Visible := True else
 MasterData1.Visible := False;

Run the report and make sure, that the script works correctly:

Let us explain several details. You can assign one handler to several events of
different objects at once; in this case the “Sender” parameter defines the object, which has
initiated the event (similarly to the “Sender” parameter in the Delphi events). To assign a
name of the already existing handler to the event, one can either enter it manually in the
objects’ inspector, or select it in the pulldown, in exactly the same way as in the Delphi
environment:

The link to the handler can be easily deleted. To do that, select a required property
and click the “Delete” key.

FastReport – User Manual 110

Printing the group’s sum total in the group’s header

This quite often-used method requires use of scripts because total value in an
ordinary report becomes available only after all group's records are handled. To display a
sum in the group's header (before the group is handled), the following algorithm is used:
- the two-pass option of the report is turned on ("Report|Options..." menu item);
- in the first pass, the sum of each group is calculated and saved in an array;
- in the second pass, the values are extracted from the array and typed in the group's
header.

Let us show, two ways of how this task may be accomplished. First of all, let us
create a new project in Delphi, put the “TQuery,” “TfrxReport,” and “TfrxDBDataSet”
components to the form. Set them in the following way:

Query1:
DatabaseName = 'DBDEMOS'
SQL =
select * from customer, orders
where orders.CustNo = customer.CustNo
order by customer.CustNo, orders.OrderNo

frxDBDataSet1:
DataSet = Query1
UserName = 'Group'

Enter the designer and connect our data source to the report. Enable the double
pass in report's settings (the "Report|Options..." menu item). Add two bands to the report:
"Group header" and "Master data." In the "Group header" band's editor, specify the
condition (“Group.CustNo” data field). Connect the data-band to the “Group” data
source, and then arrange objects in the following way:

For entering sum value, we use the selected object in the picture (in our example
its name is “Memo8”).

The first way.

FastReport – User Manual 111

We use the “TStringList" class as an array for sums' storage. Store values in the
form of lines. At the same time, the first line in the list corresponds to the value of the
first group, etc. The integer-valued variable (which we will augment after printing the
next group) is used for calculating the group's number.

Thus, our script will look as follows:

var
 List: TStringList;
 i: Integer;

procedure frReport1OnStartReport(Sender: TfrxComponent);
begin
 List := TStringList.Create;
end;
procedure frReport1OnStopReport(Sender: TfrxComponent);
begin
 List.Free;
end;
procedure Page1OnBeforePrint(Sender: TfrxComponent);
begin
 i := 0;
end;
procedure GroupHeader1OnBeforePrint(Sender: TfrxComponent);
begin
 if Engine.FinalPass then
 Memo8.Text := 'Sum: ' + List[i];
end;
procedure GroupFooter1OnBeforePrint(Sender: TfrxComponent);
begin
 List.Add(FloatToStr(<SUM(<Group."ItemsTotal">,MasterData1)>));
 Inc(i);
end;
begin
end.

Looking at the names of the procedures, you can easily find out the events we
have used. They are: “Report.OnStartReport,” “Report.OnStopReport,”
“Page1.OnBeforePrint,” “GroupHeader1.OnBeforePrint,” and
“GroupFooter1.OnBeforePrint.” As for the first two events, they are called, as it was said,
in the beginning and in the end of the report respectively. To create handlers for these
events, one should select the "Report" object in the "Report tree" window; its properties
will appear in the objects' inspector. After that, we would act in a standard way: switch to
the inspector's "Events" bookmark and create handlers.

Why didn't we use the main procedure for creation of the “List” list and performed
it in the “OnStartReport” event? That is because the created object should be cleared after

FastReport – User Manual 112

a report is finished. That is why it is rather logical to create objects in the
“OnStartReport” event and clear them via the “OnStopReport.” In other cases (when
memory does not need to be emptied) one can use the main procedure for initialization of
variables.

Everything concerning creation and clearing of the “List” object seems to be quite
obvious. Now let us examine the work of the script. In the beginning of the page, the
counter of the current group (the “i” variable) is reset to “0” and increments after printing
each group (in the “GroupFooter1.OnBeforePrint” event). The calculated sum's value is
added to the list in this very event. The “GroupHeader1.OnBeforePrint” event does not
trigger during the first pass (the “Engine.FinalPass” verification). During the second pass
(when the “List” list is filled with values), the value, which corresponds to the current
group is retrieved into this event, and it is recorded to the “Memo8” object's text, which
displays the sum total in the group title. In a finished report, it looks in the following way:

As we can see, the algorithm is rather simple. Nevertheless, it can be simplified.

The second way.

We use the list of report's variables as an array for sums' storage. As we
remember, reference to such objects is performed via the “Get” and “Set” functions. That
saves us from difficulty to create superfluous objects and to free the storage. Our script
will look as follows:

procedure GroupHeader1OnBeforePrint(Sender: TfrxComponent);
begin
 if Engine.FinalPass then
 Memo8.Text := 'Sum: ' + Get(<Group."CustNo">);
end;
procedure GroupFooter1OnBeforePrint(Sender: TfrxComponent);
begin
 Set(<Group."CustNo">,
 FloatToStr(<SUM(<Group."ItemsTotal">,MasterData1)>));
end;
begin
end.

FastReport – User Manual 113

As you can see, the script was rather simplified. A code in the
“GroupFooter1.OnBeforePrint” handler sets a variable's value with a name similar to the
client's number (one can use any identifier, which unambiguously identifies the client, for
example, his name <Group."Company">). If there is no such variable, it would be
created; if there is, its value would be changed. In the “GroupHeader1.OnBeforePrint”
handler, a variable's value with the number of the current group is computed.

“OnAfterData” event

This event is generated after the report's object is filled with the data, to which it
is connected. It is convenient to use this event for analyzing either a DB field value, or an
expression contained in the object. The fact is that this value is placed to the “Value”
service variable, the value of which is available in this event only. So, having two "Text"
objects with the [Table1."Field1"] and [<Table2."Field1"> + 10] contents, it is convenient
to analyze the value of these expressions referring to the “Value” variable:

if Value > 3000 then
 Memo1.Color := clRed

instead of writing something like that:

if <Table1."Field1"> > 3000 then
 Memo1.Color := clRed

Moreover, using of “Value” instead of an expression provides you with a possibility to
write one multipurpose handler of the “OnAfterData” event, and to connect it to several
objects.

One more thing is to be noted. If there are several expressions in an object (for
example, [expr1] [expr2]) a value of the last expression is transferred to the “Value”
variable.

Service objects

In addition to the objects included in the report (pages, bands, "Text" and other
objects), some service objects are available in the script, which may be of some use when
managing report's construction. The “Engine” object, which we used in the previous
chapter, refers to this kind of objects. The list of service objects is given below:

- Report - the "Report" object;
- Engine - the link to the report's slider;
- Outline - the link to the "Report tree" control element in a preview window.

Let us examine each of the objects.

FastReport – User Manual 114

“Report” object

It represents a link to the current report. The property of this object can be seen
when selecting the "Report" element in the "Report tree" window.

Methods:

Method Description
function Calc(const Expr:
String): Variant

Returns the “Expr” expression's value, for example,
Report.Calc('1+2') returns “3.” Any expression,
which is correct in terms of FastReport's, can be
transferred as an expression.

function GetDataSet(const
Alias: String): TfrxDataSet

Returns a data set with a soecified name. The data set
should be included into the list of the report's data
("Report|Data..." dialogue).

“Engine” object

This is the most useful and interesting object, which represents a link to the slider
(FastReport’s core, which manages report construction). By using the slider’s properties
and methods one can construct really exotic report types. Let us examine methods and
properties of this object.

Property Type Description
CurColumn Integer The number of the current column in a multi-

columned report. A value can be bound to this
property.

CurX Extended The current shift of the coordinates on the X-axis. A
value can be bound to this property.

CurY Extended The current shift of the coordinates on the Y-axis. A
value can be bound to this property.

DoublePass Boolean Equal to “True,” if the report is a two-pass one.
Analogous to Report.EngineOptions.DoublePass.

FinalPass Boolean Equal to “True,” if the last pass of the two-pass report
is performed.

PageHeight Extended Printable region’s height, in pixels.
PageWidth Extended Printable region’s width, in pixels.
StartDate TDateTime Time of report running. A counterpart of the <Date>

system variable.
StartTime TDateTime Time of report running. A counterpart of the <Time>

system variable.
TotalPages Integer A number of pages in a report. A counterpart of the <

TotalPages > system variable. The report should be a
two-pass one, so that this variable can be used.

FastReport – User Manual 115

Methods:

Method Description
procedure AddAnchor (const
Text: String)

Adds “anchor” to the list of anchors. See more below.

procedure NewColumn Creates a new column in a multicolumn report. After
the last column, page break is automatically inserted.

procedure NewPage Creates a new page (page break).
procedure ShowBand(Band:
TfrxBand)

Displays a band with a specified name. After
displaying a band, the “CurY” position is
automatically shifted.

function FreeSpace: Extended Returns height value of white space left on a page, in
pixels.

function GetAnchorPage(const
Text: String): Integer

Returns the number of the page, in which the
specified anchor is placed.

"Outline" object

This object represents the "Report tree" control element in a preview window.

This element displays a treelike structure of a finished report. When clicking on
any tree node, there is a jump to the page connected to this node. To display the tree, you

should either enable it by clicking the button in the toolbar of the preview window, or
specify it with the help of the “Report.PreviewOptions.OutlineVisible=True” property.
The control element's width in pixels can be specified there as well:
Report.PreviewOptions.OutlineWidth.

Let us examine this object's methods.

FastReport – User Manual 116

Method Description
procedure AddItem(const Text:
String)

Adds an element with the “Text” name to the current
tree position. The current report’s page and the
current position on the page are associated with the
element.

procedure LevelRoot Shifts the current position in the tree to the root level.
procedure LevelUp Shifts the current position in the tree on one level up.

Using the “Engine” object

We have already mentioned, that the “Engine” object represents the report's slider,
which manages report's construction. By using the slider's properties and methods, one
can manage the process of arrangement bands on a page. First of all let us attend to
theory.

The picture below displays the report's page and properties' names, which return
different dimensions.

The page has the “PaperWidth” and “PaperHeight” physical dimensions. These
dimensions correspond to page's properties of the same name that are visible in the
objects' inspector when selecting a page. So, size of an A4-format page would be
210X297mm.

The “PageWidth” and “PageHeight” parameters define the dimensions of a
printable region, which is almost always less than physical dimensions of a page. The size
of printable region is defined by the page's fields, which depend on such report page

FastReport – User Manual 117

properties as “LeftMargin,” “TopMargin,” “RightMargin,” “BottomMargin.” The
printable region’s size in pixels is returned by the “Engine.PageWidth” and
“Engine.PageHeight” properties.

Finally, the “FreeSpace” parameter defines the height of free space on a page. If
there is a "Page Footer" band on the page, its height is taken into account when
calculating FreeSpace. This parameter is returned in pixels by the “Engine.FreeSpace
function.” Note that after displaying the next band, free space reduces on a page, and this
is what is considered during calculating FreeSpace.

How do ready report's pages form? The FastReport core produces bands on the
page as long as there is enough free space. When there is no free space, the "Page Footer"
band is printed (if available) and a new blank page is formed. As it was already said, after
displaying the next band, the height of free space descends. Moreover, displaying of a
next band begins from the current position, which is defined by coordinates on X-axis and
Y-axis. This position returns in the “Engine.CurX” and “Engine.CurY” properties
respectively. After printing the next band, the CurY position automatically increases by
height value of the printed band. After a new page is formed, the “CurY” position is equal
to “0.” The “CurX” position is modified when printing multi-channel reports.

The “Engine.CurX” and “Engine.CurY” properties are available not only for
reading, but also for recording. That means that bands can be shifted manually by using
one of appropriate events. For example, when you have a report looking as shown at the
picture,

it can be printed in the following way:

This is a result of the script's work, dedicated to the “OnBeforePrint” band's event:

procedure MasterData1OnBeforePrint(Sender: TfrxComponent);
begin
 Engine.CurX := Engine.CurX + 5;
end;

FastReport – User Manual 118

Manipulation with the “CurY” property allows, for example, printing bands in
splice:

The corresponding script:

procedure MasterData1OnBeforePrint(Sender: TfrxComponent);
begin
 Engine.CurY := Engine.CurY - 15;
end;

The “Engine.NewPage” method allows page breaks in any required place of a
report. At the same time, printing continues from a new page. Thus, in our example one
can insert a break after printing the second record:

procedure MasterData1OnAfterPrint(Sender: TfrxComponent);
begin
 if <Line> = 2 then
 Engine.NewPage;
end;

Note, that now we perform it in the “OnAfterPrint” event (that is to say, after the
band is already printed). We want to draw your attention to the fact that the “Line”
service variable returns the sequence number of the record.

The “Engine.NewColumn” method breaks a column in multi-columned reports.
As soon as there is no column left, this method creates a new page

Anchors

Anchor is one of the elements of the hyperlink system, which allows to jump to
any element, connected to the finished report’s object by clicking on it (in the preview
window).

Anchor is a special tip, which is set via the “Engine.AddAnchor” method. Anchor
has a name, which corresponds with the page number position on the page. To jump to an
anchor with a specified name, put the following line into the URL property of any report's
object:

#AnchorName
or
#[AnchorName]

FastReport – User Manual 119

In the latter case, FastReport will expand the square brackets of the expression.

Clicking on this object executes jump to the part of the report, where the anchor
was added.

It is convenient to use anchors when constructing the "Contents" chapter with
links to corresponding chapters. Let us illustrate this by the following example. To
perform this, we need the “Customer.db” table, which is already familiar to us.

Our report will be a double-page one (which presupposes two pages in designer
mode). We will place the "Contents" chapter on the first page, and the list of clients on
the second one. Clicking on the content line executes jumping to a corresponding report's
element.

The first page:

Let us place the following line to the URL property of the "Text" object, which belongs to
the data-band

#[Customers."Company"]

and set the font’s properties: blue color and underlining to simulate the hyperlink’s
appearance.

The second page:

To add an anchor, let us type “MasterData2.OnBeforePrint” in the band’s script:

FastReport – User Manual 120

procedure MasterData2OnBeforePrint(Sender: TfrxComponent);
begin
 Engine.AddAnchor(<Customers."Company">);
end;

That is all we needed. When starting a report, let us make sure that our
“hyperlinks” work.

The last thing to be mentioned is the “Engine.GetAnchorPage” function. This
function returns the number of the page, where the corresponding anchor was added. This
function is useful when creating the “Contents” chapter as well. A report must be a two-
pass one; otherwise the function cannot be used.

Using the “Outline” object

The “Outline” object, as it was already said, represents a report’s tree, which can
be displayed in a preview window. Clicking on a tree’s element executes jumping to the
report’s page, which is connected to the tree’s element. It is not necessary to use the script
for operating with the “Outline,” since some bands have a mechanism, which enables to
automatically form a tree. Let us examine two examples of how the “Outline” can be used
with the help of bands and the script.

Almost all bands have the “OutlineText” property, into which a line-expression
can be put, and this in turn helps to automatically create a tree. The expression will be
calculated when forming a report, and its value will be added to the tree when printing the
band. Thus, elements’ hierarchy in the tree is similar to the bands’ hierarchy in a report.
That means, that in the tree there will be main and subordinate elements, corresponding to
main and subordinate bands in a report (a report with two levels of data or with groups
can exemplify the point). Let us illustrate process of operating with a tree by the example
of the report with groups, which we examined in the previous chapter.

Specify a value for the “GroupHeader1.OutlineText” band’s property as
“<Group."Company">.” To make the tree be displayed automatically as soon as the
preview window opens, one should set the “Report.PreviewOptions.OutlineVisible =
True” property. When starting the report, you would see the following:

FastReport – User Manual 121

Clicking on any element of the tree executes jumping to the corresponding
report’s page, and, as a result, the selected element occurs on the top of the window.

Let us add the second level to the report’s tree. To perform this, it is enough to set
the “MasterData.OutlineText” band’s property as “<Group."OrderNo">.” Thus, the tree
will look as follows:

As you might notice, the navigation even in the orders’ numbers is possible, and
hierarchy of the tree’s elements resembles the report’s hierarchy.

Now let us show, how to form/compose an analogous tree via the script without
using the “OutlineText” property. In our report, clear the “OutlineText” properties of both

FastReport – User Manual 122

bands and create two event’s handlers: “GroupHeader1.OnBeforePrint” and
“MasterData1.OnBeforePrint”:

procedure GroupHeader1OnBeforePrint(Sender: TfrxComponent);
begin
 Outline.LevelRoot;
 Outline.AddItem(<Group."Company">);
end;
procedure MasterData1OnBeforePrint(Sender: TfrxComponent);
begin
 Outline.AddItem(<Group."OrderNo">);
 Outline.LevelUp;
end;
begin
end.

When starting a report, make sure, that it works in the same way as the previous
report, where the tree was formed automatically. Let us examine, how a tree is formed.

The “Outline.AddItem” method adds a child block to the current tree block, and
then makes the child block a current one. Thus, if “AddItem” were called several times in
a row, we would receive a “ladder” as shown below:

Item1
 Item2
 Item3
 ...

The “LevelUp” and “LevelRoot” Outline methods are used for controlling the
current element. The first one moves the cursor to the element, which is located on a
higher level. Thus, the script

Outline.AddItem('Item1');
Outline.AddItem('Item2');
Outline.AddItem('Item3');
Outline.LevelUp;
Outline.AddItem('Item4');

constructs a tree like this

Item1
 Item2
 Item3
 Item4

That means, that “Item4” will be a child element in relation to the “Item2”
element. The “LevelRoot” method shifts the current element to the root of the tree. For
example, the script

FastReport – User Manual 123

Outline.AddItem('Item1');
Outline.AddItem('Item2');
Outline.AddItem('Item3');
Outline.LevelRoot;
Outline.AddItem('Item4');

constructs a tree, like the one below

Item1
 Item2
 Item3
Item4

Thanks to these explanations, it becomes clear, how our report works. Every time
when printing a group title, the root of the tree becomes the current element, where a
company’s name is added. After that, the list of orders is typed, and each order is added
as a child element of the company. To make the numbers of orders located on one level,
and not displayed as a “ladder”, the transition to the upper level via the
“Outline.LevelUp” method is performed in the script.

“OnManualBuild” page’s event

The FastReport core is usually responsible for report construction. It displays
report’s bands in a definite order, as many times, as there are data, thus forming a finished
report. Sometimes it is necessary to display a report in a non-standard form, which the
FastReport core is unable to create. In this case, one can use a possibility to constructa
report manually via the “OnManualBuild” event, contained in the report’s page. If the
handler of this event were defined, then when forming a page the FastReport core would
transfer control to it. At the same time, the report’s core automatically displays the bands
located in the page, such as "Report title," "Page title," "Column title," "Report footer,"
"Page footer," "Column footer," and "Background." The core also handles the process of
forming of new pages and columns. The task of the “OnManualBuild” event’s handler is
to display data bands and their titles and footers in a definite order.

That is to say, “OnManualBuild” handler’s essence is to give a command for
displaying definite bands to the FastReport’s core. The core will do the rest itself: it will
form a new page, as soon as there is no free space on the current one; accomplish the
scripts attached to events; etc.

Let us demonstrate a handler with a simple example. In the report, there are two
master data bands, which are not connected to data:

FastReport – User Manual 124

The handler will display these bands in alternate order (six times each one). After
six bands are created, a small gap will be inserted.

procedure Page1OnManualBuild(Sender: TfrxComponent);
var
 i: Integer;
begin
 for i := 1 to 6 do
 begin
 { displaying bands one by one }
 Engine.ShowBand(MasterData1);
 Engine.ShowBand(MasterData2);
 { insert a small gap }
 if i = 3 then
 Engine.CurY := Engine.CurY + 10;
 end;
end;

FastReport – User Manual 125

The following example displays two bands’ groups next to each other.

procedure Page1OnManualBuild(Sender: TfrxComponent);
var
 i, j: Integer;
 SaveY: Extended;
begin
 SaveY := Engine.CurY;
 for j := 1 to 2 do
 begin
 for i := 1 to 6 do
 begin
 Engine.ShowBand(MasterData1);
 Engine.ShowBand(MasterData2);
 if i = 3 then
 Engine.CurY := Engine.CurY + 10;
 end;
 Engine.CurY := SaveY;
 Engine.CurX := Engine.CurX + 200;
 end;
end;

FastReport – User Manual 126

As you can see, in these examples we controlled typing of data-bands only. All the
rest bands (for example, in our case, it was “Report title”) were printed automatically.

Finally, we will demonstrate, how to construct a report of the “List of clients” type
(we have constructed it several times in this book) via the “OnManualBuild” event. In our
example, let us connect the data-band to the data source.

Event’s script is the following:

FastReport – User Manual 127

procedure Page1OnManualBuild(Sender: TfrxComponent);
var
 DataSet: TfrxDataSet;
begin
 DataSet := MasterData1.DataSet;
 DataSet.First;
 while not DataSet.Eof do
 begin
 Engine.ShowBand(MasterData1);
 DataSet.Next;
 end;
end;

When starting a report, make sure that the result of the script’s work does not
differ from a standard report at all. Refer to the process of getting a link to the Dataset; in
our example we connected a band to the data source, that is why the

DataSet := MasterData1.DataSet;

line returns a link to the data source. If a band is not connected to the source, the link to
the required source can be got in the following way:

DataSet := Report.GetDataSet('Customers');

Of course, the source, we are interested in, must be added to the report in the “Report|
Data…” dialogue

Creation of objects in the script

One can add new objects into a report by using the script. Let us demonstrate with
a simple example, how it is performed. Create a blank report, and then write in the main
script’s procedure:

var
 Band: TfrxReportTitle;
 Memo: TfrxMemoView;
begin
 Band := TfrxReportTitle.Create(Page1);
 Band.Height := 20;
 Memo := TfrxMemoView.Create(Band);
 Memo.SetBounds(10, 0, 100, 20);
 Memo.Text := 'This memo is created in code';
end.

Start a report:

FastReport – User Manual 128

Note, that we never destroy the created objects in these examples. It is not
required, since objects are automatically destroyed after the report is completed.

FastReport – User Manual 129

Dialogue forms
In addition to usual report pages, you can use several dialogue forms in a report.

For dialogue form creation, the same designer as for report pages is used. The button
in the designer toolbar is used for creating a new form; it adds a new page into a report.
When switching to the page with the dialogue form, the designer workspace changes, thus
becoming a form where objects (i.e. controls) can be placed:

It resembles the Delphi environment, doesn’t it?

Controls

Dialogue form controls are connected when using in project the rxDialogControls

 component from the FastReport component palette. To perform this, it is ehough to
put a component on any form in your project or add “frxDCtrl” into the “uses” list. This
results in connecting the following controls:

Element Name Description

FastReport – User Manual 130

TfrxLabelControl This control is used for displaying
explicative inscription on the dialogue
form.

TfrxEditControl This control is used for entering a text
line with the help of the keyboard.

TfrxMemoControl This control is used for entering several
text lines with the help of the keyboard.

TfrxButtonControl The control represents a button.

TfrxCheckBoxControl The control represents a flag, which can
perform two statuses: enabled and
disabled. Near the flag, the explicative
inscription is displayed.

TfrxRadioButtonControl The control represents a switch key
counterpart with radio button. This is the
reason why it cannot be used alone.

TfrxListBoxControl The control represents the list of lines
with a possibility to select one of them.

TfrxComboBoxControl The control represents the drop-out list of
lines with a possibility to select one of
them.

TfrxDateEditControl The control represents a field with a drop-
out calendar for date entering.

TfrxGroupBoxControl The control represents a bar with
explicative inscription which is used for
uniting several controls.

TfrxPanelControl The control represents a bar, which is
designed for uniting several controls.

TfrxBitBtnControl The control represents a button with
picture.

TfrxSpeedButtonControl The control represents a button with
picture.

TfrxMaskEditControl The control represents a text box for
entering information set in a template.

FastReport – User Manual 131

TfrxCheckListBoxControl The control represents a list of lines with
flags.

TfrxBevelControl The control is used for the dialogue form
design.

TfrxImageControl The control represents a picture in
“BMP,” “ICO,” “WMF,” or “EMF”
format.

As you can see, all elements are similar to those used in Delphi. In the FastReport
component help, you can obtain the help about realized properties, events and methods of
each element.

“Hello, World!” report

This time, we will create a report displaying a greeting window before
constructing with the help of a dialogue form. Create a new project in Delphi, and then
put the “TfrxReport” and “TfrxDialogControls” components on the form. Call FastReport
designer via double-clicking on the “TfrxReport” component and add a dialogue form
into the report. Put the “TfrxLabelControl” and “TfrxButtonControl” objects on the form:

Set objects’ properties:

TfrxLabelControl:
Caption = 'Hello, World!'

TfrxButtonControl:
Caption = 'OK'
Default = True
ModalResult = mrOk

Set the “BorderStyle = bsDialog” property in the form. As we can see, both the
controls and the form have the same set of properties as those in the corresponding Delphi
controls.

FastReport – User Manual 132

As soon as setting of the dialogue form is finished, let us return to the report page
and locate the “Text” object with any text in it there. Run the report and you will see the
form:

When clicking on the “OK” button, a report will be constructed and displayed. If
closing a form via the “Х” button, the report will not be constructed. This is the
mechanism of FastReport working: if there are dialogue forms in a report, it is
constructed only when each form is closed with the “ОК” button, i.e. it returns
ModalResult = mrOk. That is why the “ModalResult” property of the button is set equal
to “mrOk.”

Entering parameters and transferring them into a report

Let us make this example more complicated in order to show how to transfer the
values entered in the dialogue form into a report. To perform this, modify the form in the
following way:

Let us place the “Text” object containing the following text in a page:

You entered:
[Edit1.Text]

Run the report and make sure that the parameter you entered is successfully
displayed in the report. In the same way, you can address other objects of the dialogue
form. Since each object has a name, which is unique within the whole report, it can be
used at any place of the report.

FastReport – User Manual 133

Interaction of controls

Via using script, you can easily incarnate the logic of the dialogue form’s work,
for example, its controls’ interaction. Let us illustrate this by a simple example. Modify
the form in the following way:

Double click on the “CheckBox” object, so that the “OnClick” event handle
would be created, and then write the following script:

procedure CheckBox1OnClick(Sender: TfrxComponent);
begin
 Button1.Enabled := not CheckBox1.Checked;
end;

As you can see, the code does not differ much from the one, which we used to see
in Delphi. When running the report, you would see that the button responds on the flag
condition’s modification.

FastReport – User Manual 134

Data access components
Most of reports, as a rule, are based on data from DB. For accessing such data,

Delphi offers effective mechanisms, which are used in FastReport. The matter concerns
the “TTable” and “TQuery” components, which can act as data sources for the report.
Generally, for this aim you can use any components, i.e. TDataSet successors.

In addition to possibility to access data defined in the project, FastReport allows
to create new components in run-time. In FastReport the principles of components’
creation for data access are approximated to those used in Delphi environment as much as
possible. As well as in Delphi, a component is put on the form and its properties are set in
the object inspector. Component ideology is very flexible: you can create new
components to support different data access engines easily.

Components’ description

Let us examine usage of components for data access via BDE. They are connected

when using in the project the “TfrxBDEComponents” component from the
FastReport palette. At the same time, the following objects appear in the designer object
bar: “TfrxDBLookupComboBox,” “TfrxBDETable,” “TfrxBDEQuery,” and
“TfrxBDEDataBase.” These components are similar to the corresponding Delphi
components (“TDBLookupComboBox,” “TTable,” “TQuery,” and “TDataBase”) in terms
of their functioning.

Icon Name Description

FastReport – User Manual 135

TfrxDBLookupComboBox The control is used for selecting a value
from a directory.

TfrxBDETable The control is used for access to DB table.

TfrxBDEQuery The control is used for performing SQL-
query.

TfrxBDEDataBase The control is used for connecting to DB.

Let us examine each component.

TfrxDBLookupComboBox

This element is used for selecting a value in the directory table. It substitutes the
directory identifier of the selected value.

The element has the following properties:

Property Description
DataSet Data source, which a control is connected to.
ListField Name of the DB field, which will be displayed in a control.
KeyField Name of the DB key field, which will identify the selected

record.
KeyValue Value of the DB key field, which was selected in the list.
Text Value of the DB field displayed in the list.

For connecting of a control to the directory, you should fill values of the three
properties: “DataSet,” “ListField,” and “KeyField.” The selected value is available via
either the “Text” or “KeyValue” properties. You can set the initial position of a cursor in
the list with the help of the “KeyValue.”

TfrxBDETable

The component is used for organization of DB table access. The component has
the following properties:

Property Description
Active Defines whether a table is active.

FastReport – User Manual 136

DatabaseName DB name.
FieldAliases Enables to set fields aliases.
Filter Expression for records’ filtering.
Filtered Defines whether it is necessary to use filter.
IndexName Secondary index name.
MasterFields Fields connected with master dataset.
Master Master dataset.
SessionName BDE session name.
TableName DB table name.

Component properties’ functions are similar to the “TTable” Delphi properties.
To connect a component to the DB table, it is enough to fill the “DatabaseName” and
“TableName” properties. Table opening is performed either via the “Active: = True”
setting, or with the help of the “Open” method.

The “FieldAliases” property editor allows to select fields, which will be available
upon addressing the table, and to set aliases for the whole table and for each field.

The “MasterFields” property editor is used for creation of master-detail
connections between two tables. To connect two tables with the master-detail relation, a
user should specify a general table in the “Master” property and call the “MasterFields”

FastReport – User Manual 137

property editor for the subordinate table. If the table has secondary indexes, which are
necessary to be used, set the “IndexName” property beforehand.

Here you can visually bind the “master” and the “detail” fields of data sets. When
sets’ connection is of “Master-Detail” type, then when moving within the master set, the
contents of the detail set is filtered in a way that it contains only records concerned the
current record of the master set.

To connect sets’ fields, select a field from the list on the left (detail set), then a
field from the list on the right (master set), and click on the “Add” button. Thus, the
fields’ bond would be transferred to the bottom list. To clear the bottom list, use the
“Clear” button. The bound fields must be of an equal type and be the key ones.

TfrxBDEQuery

The component is used for performing SQL-queries to DB. The component has
the following properties:

Property Description
Active Defines whether a query is active.
DatabaseName DB alias name.
FieldAliases Allows to set user’s field aliases.
Filter Expression for records’ filtering.
Filtered Defines whether it is necessary to use the filter.
Master Data master-set.
Params The list of query parameters.
SQL Query text.

FastReport – User Manual 138

The “Active,” “DatabaseName,” “FieldAliases,” “Filter,” “Filtered,” and “Master”
properties are similar to the properties of the “TfrxBDETable” component described
above. The “SQL” property has its own editor for filling the SQL-query.

The “Params” property also has its editor. It becomes available as soon as a query
text contains parameters.

A parameter can be of two types: either one assigned from the master-source or
one having a concrete value (either an absolute symbol or a link to the variable or object’s
property, as it is shown in the picture, can act as a value).

In case when a parameter is taken from the data master-set, it is necessary to
adjust the “TfrxBDEQuery.Master” property. The data set must contain a field with the
name coinciding with the name of the parameter. At the same time, it is necessary to
specify neither a parameter type, nor its value.

TfrxBDEDataBase

This component is used for performing connection to database. Its function is
similar to the “TDataBase” Delphi component. The component has the following
properties:

Property Description

FastReport – User Manual 139

AliasName Alias name. The connection to DB will be performed on the
base of its properties.

Connected If “True,” it activates the connection.
DatabaseName A name, which will be added to the list of aliases.
DriverName Driver name, which provides connection to DB.
LoginPrompt Defines whether it is necessary to request a password upon

connection to DB.
Params Connection parameters.

The component performs connection to the database (as a rule, it is used for
connection to back-end). Settings for connection are taken either from the corresponding
alias (the “AliasName” property) or entered manually (to perform this, it is necessary to
specify the driver’s name: “DriverName”). The component must have the
“DatabaseName” property filled, since this value would be in the list of aliases.

To set connection parameters, it is necessary to call the “Params” property’s
editor.

The LoginPrompt property defines whether it is necessary to request a password
when connecting to DB. If “LoginPromt” = “False,” a user name and a password must be
specified in connection parameters, for example:

SERVER NAME=Path_to_file_*.gdb
USER NAME=SYSDBA
PASSWORD=masterkey

Report constructing

Let us examine construction of a simple report containing data access
components. We will use DBDEMOS demo tables as data for the example.

At first, create a project with the help of which we would be able to make
experiments. To perform this, create a new project in Delphi and place the “TfrxReport,”
“TfrxDesigner,” “TfrxDialogControls,” and “TfrxBDEComponents” components on the
form.

Define the following handler for the “Design” button:

FastReport – User Manual 140

procedure TForm1.Button1Click(Sender: TObject);
begin
 frxReport1.DesignReport;
end;

After that, compile and run the project. This is all you need for creation of the
end-user reports’ designer.

On clicking on the “Design” button, the designer, which contains a blank report,
opens. Let us examine constructing of simple reports in this environment.

Simple report of the “List” type

This report will contain data from one DB table. To construct a report, perform
the following steps.

Click on the “New report” button in the designer toolbar. A report page with
the “Report title,” the “First level data” and the “Page footer” bands will be created.

Add a dialogue form into the report. This form will be used for placing the DB
table access component.

Put the “TfrxBDETable” component on the form, and then set its properties:
DatabaseName = 'DBDEMOS'
TableName = 'Customer.db'

Go to the page with a report form. To connect the “First level data” band to the
table, double-click on it, and then select the required table in the opened window.

Drag the required fields from the “Data tree” window to the report page. After
that, the report will look roughly like this:

To preview the report, click on the “Preview” button in the toolbar.

FastReport – User Manual 141

Report with parameters’ query

Let us examine construction of a more complicated report, in which parameters
would be requested in the dialogue window before the report begins to be constructed. To
do this, perform the following actions.

Add a dialogue form into the report. Put the “Query,” “Label,” “Edit,” and
“Button” components on the report form:

Set components’ properties:
Query1:
DatabaseName = 'DBDEMOS'
SQL = 'Select * from Customer.db where CustNo > :p1'

Label1:
Caption = 'Select if CustNo greather than'

Edit1:
Text = '2000'

Button1:
Caption = 'OK'
ModalResult = mrOk

Button2:
Caption = 'Cancel'
ModalResult = mrCancel

Open the “Params” property’s editor of the “Query” component, and then set the
parameter:

FastReport – User Manual 142

After that, go to page with the report form and create a report in the way similar to
that demonstrated in the previous example:

Upon constructing a report, the dialogue, in which a user will be offered to enter a
customer number, will be displayed. After entering a requested value and clicking on the
“ОК” button, the report constructing is finished. The customers with numbers larger than
the entered one will be outtyped.

