
FastReport 3.0

Programmer's
manual

Edition 1.01

Copyright (c) 1998-2004, Fast Reports, Inc.

FastReport – Programmer’s manual 2

Table of Contents

FastReport components review..4
 TfrxReport...4
 TfrxDBDataset.. 11
 TfrxUserDataset.. 11
 TfrxDesigner... 13
 TfrxPreview.. 14
 TfrxBarcodeObject...16
 TfrxOLEObject... 16
 TfrxChartObject.. 16
 TfrxRichObject... 16
 TfrxCrossObject..16
 TfrxCheckBoxObject.. 16
 TfrxGradientObject...16
 TfrxDialogContols.. 16
 TfrxBDEComponents... 16
 TfrxADOComponents...16
 TfrxIBXComponents.. 16
Working with TfrxReport component..17
Loading and saving a report... 17
Designing a report.. 17
Running a report...17
Previewing a report.. 18
Printing a report... 18
Loading and saving a finished report... 19
Exporting a report.. 19
Creating a custom preview window...19
Building a composite report (batch printing)... 20
Numbering of pages in a composite report.. 20
Combination of pages in a composite report... 21
Interactive reports...21
Access report objects from a code... 22
Creating a report form from code...23
Creating a dialogue form from a code..25
Modifying report page’s properties ...26
Report construction with the help of a code.. 26
Printing an array...29
Printing a TStringList...29
Printing a file..29
Printing a TStringGrid .. 30

FastReport – Programmer’s manual 3

Printing TTable and TQuery ... 30
Working with a list of variables...30
Creating a list of variables... 32
Clearing a list of variables... 32
Adding a category.. 32
Adding a variable... 33
Deleting a variable... 34
Deleting a category...34
Modifying the variable’s value.. 34
Script variables...35
Passing a variable value in the TfrxReport.OnGetValue... 35
Working with styles... 36
Creation of style sets.. 38
Modifying/adding/deleting a style..39
Saving/restoring a set... 40
Clear report styles.. 40
Styles library creation...40
Displaying a list of style sets, and application of a selected style......................................41
Modification/adding/deleting of a styles set.. 41
Saving and loading a styles library...42

FastReport – Programmer’s manual 4

FastReport components review

FastReport contains a lot of components intended for report creation, modifying,
exporting to different formats, and functionality enhancement. Let us explore each of the
components presented in FastReport component palette.

 TfrxReport

This component is the main one. One TfrxReport component contains one report.
In design-time, double-clicking the component calls the report designer. The component
has all necessary properties and methods for report loading and saving, design and
viewing. Let us examine the TfrxReport methods:

procedure Clear;
Clears a report.

function LoadFromFile(const FileName: String; ExceptionIfNotFound:
Boolean = False): Boolean;
Loads a report from a file with given name. If the second parameter is equal to “True,”
and the file was not found, an exception will be generated. It returns “True,” if the file is
loaded successfully.

procedure LoadFromStream(Stream: TStream);
Loads a report from the stream.

procedure SaveToFile(const FileName: String);
Saves a report to a file with given name.

procedure SaveToStream(Stream: TStream);
Saves a report to the stream.

procedure DesignReport;
Calls the report designer. The designer should be included into your project (to perform
this, it is enough to either use the “TfrxDesigner” component, or include the “frxDesgn”
unit into the “Uses” list).

procedure ShowReport(ClearLastReport: Boolean = True);
Starts a report and displays a result in the preview window. If the “ClearLastReport”
parameter is equal to “False,” then a report will be added to the previously constructed
one, otherwise the previously constructed report is cleared (by default).

function PrepareReport(ClearLastReport: Boolean = True): Boolean;
Starts a report without a preview window. The parameter assignment is the same as in the
“ShowReport” method. If a report is constructed successfully, this function returns
“True.”

procedure ShowPreparedReport;
Displays the report, which was previously built via the “PrepareReport” call.

FastReport – Programmer’s manual 5

procedure Print;
Prints a report.

procedure Export(Filter: TfrxCustomExportFilter);
Exports a report using the specified export filter.

Since the following methods are service ones, in most cases you would not need
to use them. They may be useful for FastReport functionality enhancement, for example,
when writing custom report components.

function Calc(const Expr: String): Variant;
Calculates the “Expr” expression and returns the result.

function GetAlias(DataSet: TfrxDataSet): String;
Returns an alias for the given data set. Dataset should be included in the
TfrxReport.Datasets.

function GetDataset(const Alias: String): TfrxDataset;
Returns the data set on its alias name. Dataset should be included in the
TfrxReport.Datasets.

procedure DoNotifyEvent(Obj: TObject; const EventName: String);
Executes the “EventName” event handler of the “TfrxNotifyEvent” type, connected to the
“Obj” object.

procedure DoParamEvent(const EventName: String; var Params: Variant);
Executes the “EventName” event handler of the voluntary type with parameters.

procedure GetDatasetAndField(const ComplexName: String; var Dataset:
TfrxDataset; var Field: String);
Parses the “ComplexName” complex name of the DataSet.”Field” type, returning the
reference to the dataset, and the field.

procedure GetDataSetList(List: TStrings; OnlyDB: Boolean = False);
Returns the list of the data sets available in the report in the “List” parameter. The second
parameter specifies whether it is necessary to return only the data sets, connected with
DB.

function GetIniFile: TCustomIniFile;
Returns the ini-file instance that stores all the designer settings. It may be either ini-file or
registry, depending on IniFile property value.

procedure AddFunction(const FuncName: String; const Category: String =
''; const Description: String = '');
Adds a user function to the list of the functions available in the report. See more in the
“The functions’ list extension” chapter.

FastReport – Programmer’s manual 6

The TfrxReport component has the following properties:

property EngineOptions: TfrxEngineOptions;
A set of properties related to the FastReport engine.

property IniFile: String;
A file name or a name of the registry key for storing the FastReport environment settings.

property Preview: TfrxCustomPreview;
A link to the “TfrxPreview” component, in which the finished report should be displayed.
If this property is blank, a report is displayed in the standard preview window. See the
“Custom preview windows creating” chapter.

property PreviewOptions: TfrxPreviewOptions;
A set of properties, relating to the report preview.

property PrintOptions: TfrxPrintOptions;
A set of properties, which relate to the report printing.

property ReportOptions: TfrxReportOptions;
Defines a set of properties relating to the report.

property ScriptLanguage: String;
Script language used in a report.

property ScriptText: TStrings;
Script text.

property AllObjects: TList readonly;
The list of all objects, the report contains (including pages).

property DataSets: TfrxReportDataSets readonly;
The list of data sets available for the report.

property Designer: TfrxCustomDesigner readonly;
A link to the report designer (actual when the designer is enabled).

property Engine: TfrxCustomEngine readonly;
A link to the report engine. It is useful in cases when it is necessary to operate a process
of the report construction from a code.

property Errors: TStrings readonly;
The list of errors, occurring during one or another operation.

property FileName: String;
Defines a report file name; it is displayed in the designer.

property PreviewPages: TfrxCustomPreviewPages readonly;
Defines a link to the pages of a finished report. It is used in all operations, which are
connected with a finished report (printing, saving, export, etc.).

FastReport – Programmer’s manual 7

property Pages[Index: Integer]: TfrxPage readonly;
The list of report pages. The pages of the “dialogue form” type are also included in this
list.

property PagesCount: Integer readonly;
Number of pages in a report template.

property Script: TfsScript readonly;
The “TfsScript” component, linked to the report. By using this link, you can add your
variables, classes, functions, which can be used in a report script in the future. See more
in the FastScript developer’s manual.

property Style: TfrxStyle;
Report style. See more about operating with styles in the corresponding chapter.

property Variables: TfrxVariables readonly;
The list of report variables. See more about operating with variables in the corresponding
chapter.

A set of properties related to the FastReport engine:

 TfrxEngineOptions = class(TPersistent)
 published
 property ConvertNulls: Boolean default True;
Converts the “Null” value of the DB field into “0,” “False,” or empty string, depending
on the field type.

 property DoublePass: Boolean default False;
Makes a report a two-pass one.

 property MaxMemSize: Integer default 10;
The maximum size of memory in Mbytes, allocated to the report pages’ cache. It becomes
useful in cases when the “UseFileCashe” property is equal to “True.” If a report begins to
occupy more memory during construction, caching of the constructed report pages into a
temporary file is performed. This property is inexact and allows only approximate
determination of the memory limit.

 property PrintIfEmpty: Boolean default True;
Defines, whether it is necessary to print a blank report (one which containing no data
lines).

 property SilentMode: Boolean default False;
“Silent” mode. Thus all messages about errors are stored in the “TfrxReport.Errors”
property, without displaying any messages on the screen.

 property TempDir: String;
Specifies a path to the directory for storing temporary files.

FastReport – Programmer’s manual 8

 property UseFileCache: Boolean default False;
Defines, whether it is necessary to use report pages caching into the file (see the
“MaxMemSize” property).
 end;

A set of properties, relating to the report preview:

 TfrxPreviewOptions = class(TPersistent)
 published
 property AllowEdit: Boolean default True;
Enables or disables a finished report editing.

 property Buttons: TfrxPreviewButtons;
A set of buttons, which will be available in the preview window.

 TfrxPreviewButtons = set of TfrxPreviewButton;
 TfrxPreviewButton = (pbPrint, pbLoad, pbSave, pbExport, pbZoom,
pbFind, pbOutline, pbPageSetup, pbTools, pbEdit, pbNavigator);

The available values of this property are the following:

pbPrint - printing
pbLoad – loading from a file
pbSave – saving into a file
pbExport - export
pbZoom - zooming
pbFind - search
pbOutline – report outline enabling
pbPageSetup – page properties
pbTools - tools
pbEdit - editor
pbNavigator - navigation

You can combine any of these values.

 property DoubleBuffered: Boolean default True;
A double-buffer mode for the preview window. If enabled (by default), the preview
window will not flicker during repainting, but the process speed would be reduced.

 property Maximized: Boolean default True;
Defines whether the preview window is maximized.

 property MDIChild: Boolean default False;
Defines whether the preview window is MDIChild (for MDI interface organizing).

 property Modal: Boolean default True;
Defines whether the preview window is modal.

FastReport – Programmer’s manual 9

 property OutlineVisible: Boolean default False;
Defines whether the panel with the report outline is visible.

 property OutlineWidth: Integer default 120;
Defines width of the panel with the report outline.

 property ShowCaptions: Boolean default False;
Defines whether it is necessary to display button captions. When enabling this property,
you should limit the number of the displayed buttons in the Buttons property, since all the
buttons would not find room on the screen.

 property Zoom: Extended;
Default zooming.

 property ZoomMode: TfrxZoomMode default zmDefault;
Default zooming mode. The following values are available:

zmDefault – zooming via the “Zoom” property;
zmWholePage – the whole page fits;
zmPageWidth – the page width fits;
zmManyPages – two pages fit.

 end;

A set of properties, which relate to the report printing:

 TfrxPrintOptions = class(TPersistent)
 published
 property Copies: Integer default 1;
A number of the printable copies by default.

 property Collate: Boolean default True;
Whether to collate the copies.

 property PageNumbers: String;
Page numbers, which are to be printed. For example, “1,3,5-12,17-“.

 property Printer: String;
Printer name.

 property PrintPages: TfrxPrintPages default ppAll;
Defines the pages to be printed. The following values are available:
ppAll - all
ppOdd - odd
ppEven - even

 property ShowDialog: Boolean default True;
Whether to display a print dialogue.

FastReport – Programmer’s manual 10

 end;

A set of properties relating to the report:

 TfrxReportOptions = class(TPersistent)
 published
 property Author: String;
Report author.

 property CreateDate: TDateTime;
Report creation date.

 property Description: TStrings;
Report description.

 property Name: String;
Report name.

 property LastChange: TDateTime;
The date the report was last modified.

 property Password: String;
Report password. If this property is not blank, a password is required when opening a
report.

 property Picture: TPicture;
Report picture.

 property VersionBuild: String;
 property VersionMajor: String;
 property VersionMinor: String;
 property VersionRelease: String;
Properties, which detect the number of a version.
 end;

The following events are defined in the TfrxReport component:

property OnAfterPrint: TfrxBeforePrintEvent;
When starting a report. It occurs after handling each object.

property OnBeforePrint: TfrxBeforePrintEvent;
When starting a report. It occurs before handling each object.

property OnClickObject: TfrxClickObjectEvent;
When previewing a report in the preview window. Occurs when clicking the object.

property OnGetValue: TfrxGetValueEvent;

FastReport – Programmer’s manual 11

When starting a report. Occurs when an unknown variable is met. An event handler must
return the value of this variable.

property OnManualBuild: TfrxManualBuildEvent;
When starting a report. If the handler of this event is allocated, then the FastReport engine
is blocked and you thus would have to construct a report manually. See more information
in the corresponding chapter.

property OnMouseOverObject: TfrxMouseOverObjectEvent;
When report is previewed in the preview window. Occurs when mouse cursor passes over
the object.

property OnUserFunction: TfrxUserFunctionEvent;
When starting a report. Occurs when calling a function, added with the help of the
“AddFunction” method. See more in the corresponding chapter.

 TfrxDBDataset

 TfrxUserDataset

Components for data access. The FastReport uses these components for
navigation and reference to the data set fields. Both of the components have a general
“TfrxDataSet” parent, from which they inherit most part of the functionality.

The TfrxUserDataSet component allows constructing reports, which are not
connected to the data from DB, but do receive data from other sources (for example,
array, file, etc.). At the same time, a programmer should only provide navigation in such
source. Data receiving is performed not via this component, but using other ways (for
example, via the “TfrxReport.OnGetValue” event).

The TfrxUserDataSet component has the following properties:

property RecNo: Integer readonly;
A current record number. The first record’s number is “0”.

property Enabled: Boolean default True;
Defines, whether the given component is available from the designer.

property RangeBegin: TfrxRangeBegin default rbFirst;
The navigation start point. The following values are available:
rbFirst – from the beginning of the data
rbCurrent – from the current record

property RangeEnd: TfrxRangeEnd default reLast;
The endpoint of navigation. The following values are available:

reLast – till the end of the data

FastReport – Programmer’s manual 12

reCurrent – till the current record
reCount – by the number of records set in the “RangeEndCount” property

property RangeEndCount: Integer;
A number of records in the data set, if the “RangeEnd” property = reCount.

property UserName: String;
A symbolic name, under which the dataset will be displayed in the designer.

property OnCheckEOF: TfrxCheckEOFEvent;
TfrxCheckEOFEvent = procedure(Sender: TObject; var Eof: Boolean) of object;
This event’s handler must return the Eof = True parameter, if the end of the data set is
reached.

property OnFirst: TNotifyEvent;
This event’s handler must move the cursor to the beginning of the data set.

property OnNext: TNotifyEvent;
This event’s handler must move the cursor to the next record.

property OnPrior: TNotifyEvent;
This event’s handler must move the cursor to the previous record.

The TfrxDBDataSet component is designed for connecting to the DB components,
which are based on TDataSet, such as “TTable” and “TQuery.” Such functions as
navigation in the data source and referring to fields are performed automatically, which
means that a programmer does not have to worry about it. In addition to the above-
described properties, the component has the following ones:

property CloseDataSource: Boolean default False;
Close a data set after report construction is completed.

property OpenDataSource: Boolean default True;
Open a data set before report construction is started.

property FieldAliases: TStrings;
Symbolic names of data set fields.

property DataSet: TDataSet;
property DataSource: TDataSource;
A link to a component of the TDataSet type or TDataSource, which is, in fact, a data set.

property OnClose: TNotifyEvent;
An event occurs when opening a data set.

property OnOpen: TNotifyEvent;
An event occurs when closing a data set.

FastReport – Programmer’s manual 13

 TfrxDesigner

The TfrxDesigner component is a report designer. When using this component,
you get an opportunity to use the report designer in your project. The component itself
contains only a few designer settings; the designer itself is connected when adding the
“frxDesgn” unit into the “Uses” list (that occurs automatically when using the given
component).

The component contains the following properties:

property CloseQuery: Boolean default True;
Defines, whether it is necessary to ask about report saving on the designer closing.

property OpenDir: String;
The name of a folder, from which the file is opened by default.

property SaveDir: String;
The name of a folder, where the file is saved to by default.

property Restrictions: TfrxDesignerRestrictions;
A set of flags, which forbid different operations in the designer. May contain either one
value, or a combination several values:

drDontInsertObject – forbid objects’ insertion
drDontDeletePage – forbid pages’ deletion
drDontCreatePage – forbid new pages’ creation
drDontChangePageOptions – forbid modifying page’s properties
drDontCreateReport – forbid creation of a new report
drDontLoadReport – forbid report’s loading
drDontSaveReport – forbid report’s saving
drDontPreviewReport – forbid report’s preview
drDontEditVariables – forbid variables’ editing
drDontChangeReportOptions – forbid modifying the report’s properties

property OnLoadReport: TfrxLoadReportEvent;
TfrxLoadReportEvent = function(Report: TfrxReport): Boolean of object;
The event occurs when loading a report. With the help of this event, you can manage
report's loading from DB. See more information in the corresponding chapter.

property OnSaveReport: TfrxSaveReportEvent;
TfrxSaveReportEvent = function(Report: TfrxReport; SaveAs: Boolean):
Boolean of object;
The event occurs when saving a report. With the help of this event, you can manage
process of report’s saving in DB. See more information in the corresponding chapter.

property OnShow: TNotifyEvent;
The event occurs when the designer starts.

FastReport – Programmer’s manual 14

 TfrxPreview

The component is designed for creation of custom preview windows.

procedure AddPage;
Adds a blank page to the end of the report.

procedure DeletePage;
Deletes the current page.

procedure Print;
Prints a report.

procedure LoadFromFile;
Displays the file loading dialogue.

procedure LoadFromFile(FileName: String);
Loads a file without displaying the dialogue.

procedure SaveToFile;
Displays the file saving dialogue.

procedure SaveToFile(FileName: String);
Saves a file without displaying the dialogue.

procedure Edit;
Loads the current page for editing to the designer.

procedure Export(Filter: TfrxCustomExportFilter);
Exports the report using the specified export filter.

procedure First;
Moves to the first page.

procedure Next;
Moves to the next page.

procedure Prior;
Moves to the previous page.

procedure Last;
Moves to the last page.

procedure PageSetupDlg;
Displays the page setting dialogue.

procedure Find;

FastReport – Programmer’s manual 15

Displays the text searching dialogue.

procedure FindNext;
Continues searching the text.

procedure Cancel;
Aborts a report constructing.

procedure Clear;
Clears a report.

procedure MouseWheelScroll(Delta: Integer);
Scrolls the preview window. This method is used for Form.OnMouseWheel event
handler.

You can use the following properties:

property PageCount: Integer readonly;
Number of pages in a report.

property PageNo: Integer;
The current page number (starts from 1). To move to a required page, assign a value to
this property.

property Tool: TfrxPreviewTool;
A selected tool (hand “ptHand” or magnifier “ptZoom”).

property Zoom: Extended;
The scaling factor. “1” conforms 100% scale.

property ZoomMode: TfrxZoomMode;
Zoom mode. The following values are available:
 zmDefault – scale can be set with the help of the “Zoom” property;
 zmWholePage – the whole page fits;
 zmPageWidth – the page fits by width;
 zmManyPages – two pages fit.

property OutlineVisible: Boolean;
Report tree visibility.

property OnPageChanged: TfrxPageChangedEvent;
This event is generated when the current page is being changed.

FastReport – Programmer’s manual 16

 TfrxBarcodeObject

 TfrxOLEObject

 TfrxChartObject

 TfrxRichObject

 TfrxCrossObject

 TfrxCheckBoxObject

 TfrxGradientObject

Add-in objects, which can be used in the report. These components themselves do
not do anything; they are necessary for automatic adding the corresponding component's
unit to the “Uses” list. If you attempt to open a report, where the connectable components
are used, without including the given objects into the project, an error message will
appear.

 TfrxDialogContols

A set of add-in objects, which can be used in the dialogue forms inside the report.
It contains the following components: button, edit box, list box, etc. The component itself
does not do anything; it is necessary for automatic adding the “frxDCtrl” unit to the
“Uses” list.

 TfrxBDEComponents

 TfrxADOComponents

 TfrxIBXComponents

A set of add-in objects, which can be used in the dialogue forms inside the report.
It contains the following components: “database”, “table” and “query”. These
components themselves do not do anything; they are necessary for automatic adding the
corresponding component's unit to the “Uses” list.

FastReport – Programmer’s manual 17

Working with TfrxReport component

Loading and saving a report

By default, a report form is stored together with the project form, i.e. in a DFM
file. In most cases, no more operations required, and you thus would not need to take
special measures to load a report. If you decided to store a report form in a file or in the
DB BLOb-field (this provides great flexibility, i.e. you can modify a report without
recompiling the program), you would have to use the “TfrxReport” methods for report
loading and saving:

function LoadFromFile(const FileName: String; ExceptionIfNotFound:
Boolean = False): Boolean;
Loads a report from the file with the given name. If the second parameter is equal to
“True” and the file is not found, then it generates an exception. If the file is loaded
successfully, it returns “True.”

procedure LoadFromStream(Stream: TStream);
Loads a report from the stream.

procedure SaveToFile(const FileName: String);
Saves a report to a file with the specified name.

procedure SaveToStream(Stream: TStream);
Saves a report to a stream.

File with a report form has the “FR3” extension by default.

Examples:

frxReport1.LoadFromFile('c:\1.fr3');
frxReport1.SaveToFile('c:\2.fr3');

Designing a report

Calling the report designer is performed via the “TfrxReport.DesignReport”
method. A designer must be included in your project (it is enough to either use the
“TfrxDesigner” component, or add the “frxDesgn” unit into the uses list).

Example:

frxReport1.DesignReport;

Running a report

FastReport – Programmer’s manual 18

Applying one of the following two “TfrxReport” methods starts a report:

procedure ShowReport(ClearLastReport: Boolean = True);
Starts a report and displays the result in the preview window. If the “ClearLastReport”
parameter is equal to “False,” then the report will be added to the previously constructed
one, otherwise the previously constructed report will be cleared (by default).

function PrepareReport(ClearLastReport: Boolean = True): Boolean;
Starts a report, without opening the preview window. The parameter assignment is the
same as in the “ShowReport” method. If a report was constructed successfully, it returns
“True.”

In most cases, it is more convenient to use the first method. It displays the preview
window right away, while a report continues to be constructed.
The “ClearLastReport” parameter is convenient to use in case when it is necessary to add
another report to the previously constructed one (such technique is used for batch report
printing).

Example:

frxReport1.ShowReport;

Previewing a report

It is possible to display a report in the preview window in two ways: either by
calling the “TfrxReport.ShowReport” method (described above), or with the help of the
“TfrxReport.ShowPreparedReport” method. In the second case, the report construction is
not performed, but a finished report is displayed. That means, that you should either
construct it beforehand with the help of the “PrepareReport” method, or load a previously
constructed report from the file (see “Loading/saving a finished report”).

Example:

if frxReport1.PrepareReport then
 frxReport1.ShowPreparedReport;

In this case, report construction is finished first, and after that it is displayed in the
preview window. Construction of a large report can take a lot of time, and that is why it is
better to use the “ShowReport anisochronous” method, than the
“PrepareReport/ShowPreparedReport” one. One can assign preview settings by default
via the “TfrxReport.PreviewOptions” property.

Printing a report

In most cases, you will print a report from the preview window. To print a report
manually, you should use the “TfrxReport.Print” method, for example:

FastReport – Programmer’s manual 19

frxReport1.Print;

At the same time, the dialogue, in which printing parameters can be set, will
appear. You can assign settings by default, and disable a printing dialogue with the help
of the “TfrxReport.PrintOptions” property.

Loading and saving a finished report

It can be executed from the preview window. This also can be performed
manually with the help of the “TfrxReport.PreviewPages” methods:

 function LoadFromFile(const FileName: String; ExceptionIfNotFound:
Boolean = False): Boolean;
 procedure SaveToFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);
 procedure SaveToStream(Stream: TStream);

Assignment and the parameters are similar to the corresponding TfrxReport
methods. A file, which contains the finished report, has “FP3” extension by default.

Example:

frxReport1.PreviewPages.LoadFromFile('c:\1.fp3');
frxReport1.ShowPreparedReport;

Note, that after finished report loading is completed, its previewing is executed
via the “ShowPreparedReport” method!

Exporting a report

It can be performed from a preview window. The operation can also be executed
manually, via the “TfrxReport.Export” method. In the parameter of this method you
should specify the export filter you want to use:

frxReport1.Export(frxHTMLExport1);

The export filter component must be available (you must put it on the form of
your project) and be adjusted correctly.

Creating a custom preview window

FastReport displays reports in the standard preview window. If it does not suit you
for some reason, a custom preview form may be created. For this purpose, the
“TfrxPreview” component from the FastReport component palette was designed. To

FastReport – Programmer’s manual 20

display a report, the link to this component should be assigned to the
“TfrxReport.Preview” property.

There is two typical problems when using TfrxPreview component. It does not
handle keys (arrows, PgUp, PgDown etc) and mouse wheel (if any). To make
TfrxPreview working with keys, pass the focus to it (it can be done, for example, in the
OnShow event handler of a form):

frxPreview.SetFocus;

To make TfrxPreview working with mouse scroll, you have to create
OnMouseWheel event handler of a form and call TfrxPreview.MouseWheelScroll
method in this handler:

procedure TForm1.FormMouseWheel(Sender: TObject; Shift: TShiftState;
 WheelDelta: Integer; MousePos: TPoint; var Handled: Boolean);
begin
 frxPreview1.MouseWheelScroll(WheelDelta);
end;

Building a composite report (batch printing)

In some cases it is required to organize printing of several reports at once, or
capsulate and present several reports in one preview window. To perform this, there are
tools in FastReport, which allow building a new report in addition to an already existing
one. The «TfrxReport.PrepareReport» method has the optional «ClearLastReport»
Boolean parameter, which is equal to «True» by default. This parameter defines whether
it is necessary to clear pages of the previously built report. The following code shows
how to build a batch from two reports:

frxReport1.LoadFromFile('1.fr3');
frxReport1.PrepareReport;
frxReport1.LoadFromFile('2.fr3');
frxReport1.PrepareReport(False);
frxReport1.ShowPreparedReport;

We load the first report and build it without displaying. Then we load the second
one into the same «TfrxReport» object and build it with the «ClearLastReport» parameter,
equal to «False». This allows the second report to be added to the one previously built.
After that, we display a finished report in the preview window.

Numbering of pages in a composite report

You can use the «Page,» «Page#,» «TotalPages,» and «TotalPages#» system
variables for displaying a page number or a total number of pages. In composite reports,
these variables work in the following way:

FastReport – Programmer’s manual 21

Page – page number in the current report
Page# - page number in the batch
TotalPages – total number of pages in the current report (a report must be a two-pass one)
TotalPages# - total number of pages in a batch.

Combination of pages in a composite report

As it was said above, the «PrintOnPreviousPage» property of the report design
page lets you splice pages when printing, i.e. using free space of the previous page. In
composite reports, it allows to start creation of a new report on free space of the previous
report’s last page. To perform this, one should enable the «PrintOnPreviousPage«
property of the first design page of each successive report.

Interactive reports

In interactive reports, one can define a reaction for mouse-click on any of the
report objects in a preview window. For example, a user can click on the data line, and
thus run a new report with detailed data of the selected line.

Any report can become interactive. To perform this, you only need to create a
TfrxReport.OnClickObject event handler. Here is a code example of this handler below:

procedure TForm1.frxReport1ClickObject(Page: TfrxPage; View: TfrxView;
 Button: TMouseButton; Shift: TShiftState; var Modified: Boolean);
begin
 if View.Name = 'Memo1' then
 ShowMessage('Memo1 contents:' + #13#10 + TfrxMemoView(View).Text);
 if View.Name = 'Memo2' then
 begin
 TfrxMemoView(View).Text := InputBox('Edit', 'Edit Memo2 text:',
TfrxMemoView(View).Text);
 Modified := True;
 end;
end;

In the «OnClickObject» handler, you can do the following:
- modify contents of an object or a page, passed to the handler (thus, the «Modified» flag
should be specified, so that the modifications would be taken into consideration);
- call the «TfrxReport.PrepareReport» method for reconstructing/rebuilding a report.

In this example, clicking on the object with the «Memo1» name results in
displaying a message with the contents of this object. When clicking on the «Memo2,» a
dialogue is displayed, where the contents of this object can be modified. Setting of the
«Modified» flag to «True» allows holding and displaying alterations.

In the same way, a different reaction for a click can be defined; it may, for
example, run a new report. It is necessary to NOTE the following. In the FastReport 3

FastReport – Programmer’s manual 22

version, one TfrxReport component can display only one report in the preview window
(unlike the FastReport 2.x version). That is why one should run a report either in a
separate TfrxReport object, or in the same one, but the current report must be erased.

To give a prompting indication about clickable objects to the end user, we can
modify the mouse cursor when it passes over a clickable object in the preview window.
To do this, select the desired object in the report designer and set it’s cursor property to
something other than crDefault.

One more detail concerns the defining clickable objects. In simple reports, this can
be defined either in the object’s name, or in its contents. However, this cannot always be
performed in more complicated cases. For example, a detailed report should be created in
a selected data line. A user clicked on the «Memo1» object with the '12' contents. What
data line does this object refer to? That is why you should know the primary key, which
identifies this line unambiguously. FastReport enables to assign a string, containing any
data (in our case the data of the primary key), to every report’s object. This string is stored
in the «TagStr» property.

Let us illustrate this process by an example of a report, which is included in the
FastReportDemo.exe - 'Simple list' demo. This is the list of clients of a company,
containing such data as «client’s name,» «address,» «contact person,» etc. The data source
is the «Customer.db» table from the DBDEMOS demo database. This table has a primary
key, i.e. the «CustNo» field, which is not presented in the report. Our task is to determine
what record it refers to by clicking on any object from the finished report, which means to
get the value of the primary key. To perform this, it is sufficient to enter the following
value into the «TagStr» property of all the objects, lying on the Master Data band:
[Customers."CustNo"]

During a report’s building, the «TagStr» property’s contents are calculated in the
same way, as contents of text objects are calculated; this means that the variables’ values
are substituted in place of all variables. A variable in this particular case is what is
enclosed into the square brackets. That is why the lines of the '1005', '2112', etc. types will
be contained in the «TagStr» property of the objects lying on the Master Data after report
building. A simple conversion from a string into an integer will give us a value of the
primary key, with which a required record can be found.

If the primary key is composite (i.e. it contains several fields) the «TagStr»
property’s contents can be the following:
[Table1."Field1"];[Table1."Field2"]

After constructing a report, the «TagStr» property contains values of the '1000;1'
type, from which it is rather not difficult to get values of a key as well.

Access report objects from a code

FastReport’ s objects (such as report page, band, memo-object) are not directly

FastReport – Programmer’s manual 23

accessible from your code. This means that you cannot address the object by its name, as,
for example, when you addressing to a button on your form. To address an object, it
should be found with the help of the «TfrxReport.FindObject» method:

var
 Memo1: TfrxMemoView;

Memo1 := frxReport1.FindObject('Memo1') as TfrxMemoView;

after that, one can address the object’s properties and methods. You can address the
report’s pages using the «TfrxReport.Pages» property:

var
 Page1: TfrxReportPage;

Page1 := frxReport1.Pages[0] as TfrxReportPage;

Creating a report form from code

As a rule, you will create most reports using the designer. Nevertheless, in some
cases (for example, when the report’s form is unknown) it is necessary to create a report
manually, from code.

To create a report manually, one should perform the following steps in order:
- clear the report component
- add data sources
- add report’s page
- add bands on a page
- set bands’ properties, and then connect them to the data
- add objects on each band
- set objects’ properties, and then connect them to the data

Let us examine creation of a simple report of the «list» type. Assume that we have
the following components: frxReport1: TfrxReport and frxDBDataSet1: TfrxDBDataSet
(the last one is connected to data from the DBDEMOS, the «Customer.db» table). Our
report will contain one page with the «Report Title» and «Master Data» bands. On the
«Report Title» band there will be an object with the "Hello FastReport!" text, and the
«Master Data» one will contain an object with a link to the "CustNo" field.

var
 Page: TfrxReportPage;
 Band: TfrxBand;
 DataBand: TfrxMasterData;
 Memo: TfrxMemoView;
{ clear a report }
frxReport1.Clear;
{ add a dataset to the list of ones accessible for a report }
frxReport1.DataSets.Add(frxDBDataSet1);

FastReport – Programmer’s manual 24

{ add a page }
Page := TfrxReportPage.Create(frxReport1);
{ create a unique name }
Page.CreateUniqueName;
{ set sizes of fields, paper and orientation by default }
Page.SetDefaults;
{ modify paper’s orientation }
Page.Orientation := poLandscape;
{ add a report title band}
Band := TfrxReportTitle.Create(Page);
Band.CreateUniqueName;
{ it is sufficient to set the «Top» coordinate and height for a band }
{ both coordinates are in pixels }
Band.Top := 0;
Band.Height := 20;
{ add an object to the report title band }
Memo := TfrxMemoView.Create(Band);
Memo.CreateUniqueName;
Memo.Text := 'Hello FastReport!';
Memo.Height := 20;
{ this object will be stretched according to band’s width }
Memo.Align := baWidth;
{ add the masterdata band }
DataBand := TfrxMasterData.Create(Page);
DataBand.CreateUniqueName;
DataBand.DataSet := frxDBDataSet1;
{ the Top coordinate should be greater than the previously added band’s
top + height}
DataBand.Top := 100;
DataBand.Height := 20;
{ add an object on master data }
Memo := TfrxMemoView.Create(DataBand);
Memo.CreateUniqueName;
{ connect to data }
Memo.DataSet := frxDBDataSet1;
Memo.DataField := 'CustNo';
Memo.SetBounds(0, 0, 100, 20);
{ adjust the text to the right object’s margin }
Memo.HAlign := haRight;
{ show the report }
frxReport1.ShowReport;

Let us explain some details.

All the data sources, which are to be used in the report, must be added to the list
of data sources. In our case, this is performed using the «frxReport1.DataSets.Add
(frxDBDataSet1)» line. Otherwise, a report will not work.

The call for Page.SetDefaults is not necessary, since in this case a page will have the А4
format and margins of 0 mm. SetDefaults sets 10mm margins and takes page size and
alignment, which a printers have by default.

FastReport – Programmer’s manual 25

While adding bands to a page, you should make sure they do not overlap each
other. To perform this, it is sufficient to set the «Top» and «Height» coordinates. There is
no point in modifying the «Left» and «Width» coordinates, since a band always has the
width of the page, on which it is located (in case of vertical bands it's not true – you
should set Left and Width properties and don't care about Top and Height). One should
note, that the order of bands’ location on a page is of great importance. Always locate
bands in the same way you would do it in the designer.

Objects’ coordinates and sizes are set in pixels. Since the «Left,» «Top,» «Width,»
and «Height» properties of all objects have the «Extended» type, you can point out non-
integer values. The following constants are defined for converting pixels into centimeters
and inches:

fr01cm = 3.77953;
fr1cm = 37.7953;
fr01in = 9.6;
fr1in = 96;

For example, a band’s height equal to 5 mm can be set as follows:

Band.Height := fr01cm * 5;
Band.Height := fr1cm * 0.5;

Creating a dialogue form from a code

As we know, a report can contain dialogue forms. The following example shows
how to create a dialogue form, with an «OK» button:

{ for working with dialogue objects the following unit should be used }
uses frxDCtrl;
var
 Page: TfrxDialogPage;
 Button: TfrxButtonControl;
{ add a page }
Page := TfrxDialogPage.Create(frxReport1);
{ create a unique name }
Page.CreateUniqueName;
{ set sizes }
Page.Width := 200;
Page.Height := 200;
{ set a position }
Page.Position := poScreenCenter;
{ add a button }
Button := TfrxButtonControl.Create(Page);
Button.CreateUniqueName;
Button.Caption := 'OK';
Button.ModalResult := mrOk;
Button.SetBounds(60, 140, 75, 25);

FastReport – Programmer’s manual 26

{ show a report }
frxReport1.ShowReport;

Modifying report page’s properties

Sometimes it is necessary to modify report page settings (for example, to modify
paper alignment or size) from a code. The TfrxReportPage class contains the following
properties, defining the size of the page:

 property Orientation: TPrinterOrientation default poPortrait;
 property PaperWidth: Extended;
 property PaperHeight: Extended;
 property PaperSize: Integer;

The «PaperSize» property sets paper format. This is one of the standard values,
defined in the Windows.pas (for example, DMPAPER_A4). If a value to this property is
assigned, FastReport fills the «PaperWidth» and «PaperHeight» properties automatically
(paper size in millimeters). Setting the DMPAPER_USER (or 256) value as a format,
would mean that custom paper size is set. In this case, the «PaperWidth» and
«PaperHeight» properties should be filled manually.

The following example shows, how to modify parameters of the first page (it is
assumed that we already have a report):

var
 Page: TfrxReportPage;
{ the first report’s page }
Page := TfrxReportPage(frxReport1.Pages[0]);
{ modify the size }
Page.PaperSize := DMPAPER_A2;
{ modify the paper orientation }
Page.Orientation := poLandscape;

Report construction with the help of a code

The FastReport engine usually is responsible for report’s constructing. It shows
report’s bands in a particular order as many times, as the datasource to which it is
connected requires, thus forming a finished report. Sometimes it is necessary to create a
report of a non-standard form, which FastReport’s engine is unable to produce. In this
case, one can use the ability of constructing a report manually, with the help of the
«TfrxReport.OnManualBuild» event. If to define a handler of this event, the FastReport
engine sends management to it. At the same time, allocation of responsibilities for
forming a report is changed in the following way:

FastReport engine:
- report’s preparation (script, data sources initialization, bands’ tree forming)
- all calculations (aggregate functions, event handlers)

FastReport – Programmer’s manual 27

- new pages/columns’ forming (automatic showing a page/column header/footer, report
title/summary)
- other routine work

Handler:
- bands’ presentation in a certain order

The «OnManualBuild» handler’s essence is to issue commands concerning
presenting certain bands to the FastReport’s engine. The engine itself will do the rest: a
new page will be created, as soon as there is no place in the current one; execution of
scripts will be performed, etc.

The engine is represented with the «TfrxCustomEngine» class. A link to the
instance of this class is located in the «TfrxReport.Engine» property.

procedure NewColumn;
Creates a new column. If a column is the last one, it creates a new page.

procedure NewPage;
Creates a new page.

procedure ShowBand(Band: TfrxBand); overload;
Presents a band.

procedure ShowBand(Band: TfrxBandClass); overload;
Presents a band of the given type.

function FreeSpace: Extended;
Returns the amount of free space on the page (in pixels). After the next band is presented,
this value descends.

property CurColumn: Integer;
Returns/sets the current column’s number

property CurX: Extended;
Returns/sets the current X position.

property CurY: Extended;
Returns/sets the current Y position. After the next band is presented, this value ascends.

property DoublePass: Boolean;
Defines whether a report is a two-pass one.

property FinalPass: Boolean;
Defines whether the current pass is the last one.

property FooterHeight: Extended;
Returns the page footer height.

FastReport – Programmer’s manual 28

property HeaderHeight: Extended;
Returns the page header height.

property PageHeight: Extended;
Returns the height of the page’s printable region.

property PageWidth: Extended;
Returns the width of the page’s printable region.

property TotalPages: Integer;
Returns the number of pages in a finished report (only on the second pass of the two-pass
report).

Let us give an example of a simple handler. There is two «Master Data» bands in
a report, which are not connected to data. The handler presents these bands in an
interlaced order, six times each one. After six bands, a small gap is made.

var
 i: Integer;
 Band1, Band2: TfrxMasterData;
{ find required bands }
Band1 := frxReport1.FindObject('MasterData1') as TfrxMasterData;
Band2 := frxReport1.FindObject('MasterData2') as TfrxMasterData;
for i := 1 to 6 do
begin
 { lead/deduce bands one after another }
 frxReport1.Engine.ShowBand(Band1);
 frxReport1.Engine.ShowBand(Band2);
 { make a small gap }
 if i = 3 then
 frxReport1.Engine.CurY := frxReport1.Engine.CurY + 10;
end;

The next example shows two groups of bands alongside each other.

var
 i, j: Integer;
 Band1, Band2: TfrxMasterData;
 SaveY: Extended;

Band1 := frxReport1.FindObject('MasterData1') as TfrxMasterData;
Band2 := frxReport1.FindObject('MasterData2') as TfrxMasterData;
SaveY := frxReport1.Engine.CurY;
for j := 1 to 2 do
begin
 for i := 1 to 6 do
 begin
 frxReport1.Engine.ShowBand(Band1);
 frxReport1.Engine.ShowBand(Band2);
 if i = 3 then

FastReport – Programmer’s manual 29

 frxReport1.Engine.CurY := frxReport1.Engine.CurY + 10;
 end;
 frxReport1.Engine.CurY := SaveY;
 frxReport1.Engine.CurX := frxReport1.Engine.CurX + 200;
end;

Printing an array

The primary example’s code is located in the «FastReport Demos\PrintArray»
directory. Let us explain several details.

To print an array, we use a report with one «Master Data» band, which will be
presented as many times, as there are elements in the array. To do this, place a
«TfrxUserDataSet» component on the form, and then set it’s properties (it is possible to
do it in a code, as shown in our example):

 RangeEnd := reCount
 RangeEndCount := a number of elements in an array

After that, we connect the data-band to the «TfrxUserDataSet» component. To
represent the array element, place a text object with the [element] line inside the «Master
Data» band. The «element» variable is filled using a «TfrxReport.OnGetValue» event.

Printing a TStringList

The primary example’s code is located in the «FastReport Demos\PrintStringList»
directory. The method is the same, as in the example with an array.

Printing a file

The primary example’s code is located in the «FastReport Demos\PrintFile»
directory. Let us explain several details.

For printing, you should use a report with a «Master Data» band, which will be
printed once (to perform this, it should be connected to a data source, which contains one
record; select a source named "Single row" from the list). Stretching («Stretch») and
splitting («Allow Split») are enabled in the band. This means, that the way the band is
stretched allows finding room for all objects located in it. However, if a band does not
find room in a page, it will be presented partially in separate pages.

File contents are presented via the «Text» object, which contains the [file]
variable. This variable, as in the previous examples, is filled in the
«TfrxReport.OnGetValue» event. Stretching is also enabled in the object (the «Stretch»
item from the contextual menu or the «StretchMode» property = smActualHeight).

FastReport – Programmer’s manual 30

Printing a TStringGrid

The initial example’s code is located in the «FastReport Demos\PrintStringGrid»
directory. Let us explain some details.

The «TStringGrid» component represents a table with several rows and columns.
That means that a report stretches not only by height, but by width as well. To print such
component, let us use the «Cross-tab» object (it becomes available when the
«TfrxCrossObject» component is added to the project). This object is responsible only for
printing table data with a number of rows and columns unknown beforehand. The object
has two versions: «TfrxCrossView» for user’s data printing, and «TfrxDBCrossView» for
printing the specially prepared data from the DB table.

Let us use the TfrxCrossView. The object should be preliminarily set. To perform
this, let us enter report’s designer and call the object editor by double-clicking on it. We
must set the number of the rows and columns’ titles nesting, and the number of values in
the table cells. In our case, all these values must be equal to «1». In our example, the rows
and columns’ titles and the total values of lines and columns are disabled as well.
It is necessary to fill the object with values from the StringGrid in the
«TfrxReport.OnBeforePrint» event. A value is added via the «TfrxCrossView.AddValue»
method. Its parameters are the following: composite index of a line, a column and the
cell’s value (which is composite as well, since an object can contain several values in a
cell).

Printing TTable and TQuery

The initial example’s code is located in the «FastReport’s Demos\PrintTable»
directory. The principle of work is the same, as in the example with the TStringGrid. In
this case, the row’s index is its sequence number, the column’s index is the name of a
table field, and the cell’s value is the table field’s value. It is important to notice that the
functions for cell’s elements must be disabled in the «Cross-tab» object editor (since in a
cell there are data of various kinds, this leads to the error in table creation) and the table
title’s sorting must be disabled too (otherwise columns will be sorted alphabetically).

Working with a list of variables

The notion of variables was minutely explained in the corresponding chapter. Let
us briefly call to mind the main points.

A user can specify one or several variables in a report. A value or an expression,
which will be automatically calculated when referring to a variable, can be assigned to
every variable. Variables can be visually inserted into a report via the “Data tree”
window. It is convenient to use variables for aliasing of compound expressions, which are
often used in a report.

FastReport – Programmer’s manual 31

It is necessary to use the “frxVariables” unit when working with variables.
Variables are represented by the “TfrxVariable” class.

 TfrxVariable = class(TCollectionItem)
 published
 property Name: String;
Name of a variable

 property Value: Variant;
Value of a variable
 end;

The list of variables is represented by the “TfrxVariables” class. It contains all
methods necessary for working with the list.

 TfrxVariables = class(TCollection)
 public
 function Add: TfrxVariable;
Adds a variable to the end of the list

 function Insert(Index: Integer): TfrxVariable;
Adds a variable to the given position of the list

 function IndexOf(const Name: String): Integer;
Returns the index of a variable with the given name

 procedure AddVariable(const ACategory, AName: String; const AValue:
Variant);
Adds a variable to the specified category

 procedure DeleteCategory(const Name: String);
Deletes a category and all its variables

 procedure DeleteVariable(const Name: String);
Deletes a variable

 procedure GetCategoriesList(List: TStrings; ClearList: Boolean =
True);
Returns the list of categories

 procedure GetVariablesList(const Category: String; List: TStrings);
Returns the list of variables in the specified category

 property Items[Index: Integer]: TfrxVariable readonly;
The list of variables

 property Variables[Index: String]: Variant; default;
Values of variables

FastReport – Programmer’s manual 32

 end;

If the list of variables is long, it is convenient to group it by categories. For
example, when having the following list of variables:

Customer name
Account number
in total
total vat

one can represent it in the following way:

Properties
 Customer name
 Account number
Totals
 In total
 total vat

There are the following limitations:

- at least one category must be created
- categories form the first level of the data tree, variables form the second one
- categories cannot be nested
- variables’ names must be unique within a whole list, not within a category

Creating a list of variables

A link to the report variables is stored in the “TfrxReport.Variables” property. To
create a list manually, the following steps must be performed:
- clear the list
- create a category
- create variables
- repeat the 2 and 3 steps to create another category.

Clearing a list of variables

It is performed with the help of the “TfrxVariables.Clear” method:

frxReport1.Variables.Clear;

Adding a category

FastReport – Programmer’s manual 33

It is required to create at least one category. Categories and variables are stored in
one list. The category differs from a variable by the “space,” which is the first symbol of
the name. All variables located in the list after the category, are considered belonging to
this category.

Process of adding a category to the list can be performed in two ways:

frxReport1.Variables[' ' + 'My Category 1'] := Null;

or

var
 Category: TfrxVariable;
Category := frxReport1.Variables.Add;
Category.Name := ' ' + 'My category 1';

Adding a variable

Variables can be added only after a category is already added. All the variables
located in the list after the category, are considered belonging to this category. Variables’
names must be unique within the whole list, and not within a category

There are several ways to add a variable to the list:

frxReport1.Variables['My Variable 1'] := 10;

this way adds a variable (if it does not exist already) or modifies a value of the existing
variable.

var
 Variable: TfrxVariable;
Variable := frxReport1.Variables.Add;
Variable.Name := 'My Variable 1';
Variable.Value := 10;

Both of the ways add a variable to the end of the list, therefore, it would be added
to the last category. If a variable is supposed to be added to a specified position of the list,
use the “Insert” method:

var
 Variable: TfrxVariable;
Variable := frxReport1.Variables.Insert(1);
Variable.Name := 'My Variable 1';
Variable.Value := 10;

If a variable is to be added to the specified category, use the “AddVariable”
method:

FastReport – Programmer’s manual 34

frxReport1.Variables.AddVariable('My Category 1', 'My Variable 2', 10);

Deleting a variable

frxReport1.Variables.DeleteVariable('My Variable 2');

Deleting a category

To delete a category with all its variables, use the following code:

frxReport1.Variables.DeleteCategory('My Category 1');

Modifying the variable’s value

There are two ways to modify the value of a variable:

frxReport1.Variables['My Variable 2'] := 10;

or

var
 Index: Integer;
 Variable: TfrxVariable;
{ search for the variable }
Index := frxReport1.Variables.IndexOf('My Variable 2');
{ if it is found, change a value }
if Index <> -1 then
begin
 Variable := frxReport1.Variables.Items[Index];
 Variable.Value := 10;
end;

It should be noted, that when accessing a report variable its value is calculated if it
is of string type. That means the variable which value is 'Table1."Field1"' will return a
value of a DB field, but not the 'Table1."Field1"' string. You should be careful when
assigning a string-type values to report variables. For example, the next code will raise
exception "unknown variable 'test'" when running a report:

frxReport1.Variables['My Variable'] := 'test';

because FastReport trying to calculate a value of such variable. The right way to pass a
string values is:

frxReport1.Variables['My Variable'] := '''' + 'test' + '''';

In this case the variable value - string 'test' will be shown without errors. But keep

FastReport – Programmer’s manual 35

in mind that:
- string should not contain single quotes. All single quotes must be doubled;
- string should not contain #13#10 symbols.

In some cases it is easier to pass variables using a script.

Script variables

Instead of report variables, script variables are in the TfrxReport.Script. You can
define them using FastScript methods. Let's look at some differences between report and
script variables::

Report variables Script variables
Placement In the report variables list,

TfrxReport.Variables.
In the report script,
TfrxReport.Script.Variables.

Variable name May contain any symbols. May contain any symbols. But if
you want to use that variable
inside the report script, its name
should conform to Pascal
identificator specifications.

Variable value May be of any type. Variables
of string type are calculated
each time you access them, and
are, in itself, an expressions.

May be of any type. No
calculation is performed, behavior
is like standard language variable.

Accessibility Programmer can see the list of
report variables in the "Data
tree" window.

The variable is not visible,
programmer should know about
it.

Working with script variables is easy. Just assign value to the variable this way:

frxReport1.Script.Variables['My Variable'] := 'test';

In this case FastReport will create a variable if it is not exists, or assign a value to
it. There is no need to use extra quotes when assigning a string to that variable.

Passing a variable value in the TfrxReport.OnGetValue

The last way to pass a value to a report is to use TfrxReport.OnGetValue event
handler. This way is convenient in case you need to pass a dynamic value (that may
change from record to record). Two previous ways are useful to pass static values.

Let's look at example of using that way. Let's create the report and lay the "Text"
object to it. Type the following text in this object:
[My Variable]

FastReport – Programmer’s manual 36

Now create the TfrxReport.OnGetValue event handler:

procedure TForm1.frxReport1GetValue(const VarName: String;
 var Value: Variant);
begin
 if CompareText(VarName, 'My Variable') = 0 then
 Value := 'test'
end;

Run the report and we will see that variable is shown correctly. The
TfrxReport.OnGetValue event handler is called each time when FastReport finds
unknown variable. The event handler should return a value of that variable.

Working with styles

The detailed description of styles can be found in the corresponding chapter. First
of all, let us call to mind, what “style”, “set of styles” and “library of styles” are.
Style is an element, which possesses a name and properties, and determines design
attributes, i.e. color, font and frame. The style determines the way a report object should
be designed. The objects such as TfrxMemoView have the Style property, which is a
property intended to set the style name. When applying a value to this property, the style
design attributes are copied to the object.

A set of styles consists of several styles, which refer to a report. The “TfrxReport”
component has the “Styles” property, which refers to the object of the “TfrxStyles” type.
The set of styles also possesses a name. The set of styles determines design of a whole
report.

A styles library includes several sets of styles. It is convenient to perform a
selection of a concrete set for report design with the help of the library.

The TfrxStyleItem represents a style.

 TfrxStyleItem = class(TCollectionItem)
 public
 property Name: String;
Style name.

 property Color: TColor;
Background color.

 property Font: TFont;
Font.

 property Frame: TfrxFrame;
Frame.
 end;

FastReport – Programmer’s manual 37

The set of styles is represented by the TfrxStyles class. It comprises methods for
performing such set operations as reading, saving, adding, deleting, as well as searching
for a style. The set of styles file has FS3 extension by default.

 TfrxStyles = class(TCollection)
 public
 constructor Create(AReport: TfrxReport);
Creates the styles set. One can specify “nil” instead of “AReport,” however in this case a
user would be unable to use the “Apply” method.

 function Add: TfrxStyleItem;
Adds a new style.

 function Find(const Name: String): TfrxStyleItem;
Returns the style with the given name.

 procedure Apply;
Applies a set to a report.

 procedure GetList(List: TStrings);
Returns the list of the styles names.

 procedure LoadFromFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);
 Reads a set.

 procedure SaveToFile(const FileName: String);
 procedure SaveToStream(Stream: TStream);
Saves a set.

 property Items[Index: Integer]: TfrxStyleItem; default;
The list of styles.

 property Name: String;
A set’s name.

 end;

In conclusion, the last “TfrxStyleSheet” class represents a styles’ library. It has
methods for the library reading/saving, as well as adding, deleting, and style sets’
searching.

 TfrxStyleSheet = class(TObject)
 public
 constructor Create;
Constructs a library.

FastReport – Programmer’s manual 38

 procedure Clear;
Clears a library.

 procedure Delete(Index: Integer);
Deletes a set with certain number.

 procedure GetList(List: TStrings);
Returns the list of the names of styles’ sets.

 procedure LoadFromFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);
Loads a library.

 procedure SaveToFile(const FileName: String);
 procedure SaveToStream(Stream: TStream);
Saves a library.

 function Add: TfrxStyles;
Adds a new set of styles to the library.

 function Count: Integer;
Returns a number of styles’ sets in the library.

 function Find(const Name: String): TfrxStyles;
Returns a set with the set name.

 function IndexOf(const Name: String): Integer;
Returns a set number with the given name.

 property Items[Index: Integer]: TfrxStyles; default;
The list of styles’ sets.

 end;

Creation of style sets

The following code demonstrates processes of creation of styles set, and addition
of two styles to a set. After these operations are completed, the styles are applied to the
report.

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := TfrxStyles.Create(nil);
{ the first style }
Style := Styles.Add;
Style.Name := 'Style1';
Style.Font.Name := 'Courier New';

FastReport – Programmer’s manual 39

{ the second style }
Style := Styles.Add;
Style.Name := 'Style2';
Style.Font.Name := 'Times New Roman';
Style.Frame.Typ := [ftLeft, ftRight];
{ apply a set to the report }
frxReport1.Styles := Styles;

You can create and use a set in a different way:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;
Styles := frxReport1.Styles;
Styles.Clear;
{ the first style }
Style := Styles.Add;
Style.Name := 'Style1';
Style.Font.Name := 'Courier New';
{ the second style }
Style := Styles.Add;
Style.Name := 'Style2';
Style.Font.Name := 'Times New Roman';
Style.Frame.Typ := [ftLeft, ftRight];
{ apply a set to the report }
frxReport1.Styles.Apply;

Modifying/adding/deleting a style

Modifying a style with the given name:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;
Styles := frxReport1.Styles;
{ search for a style}
Style := Styles.Find('Style1');
{ modify the font size }
Style.Font.Size := 12;

Adding a style to the report styles set:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;
Styles := frxReport1.Styles;

FastReport – Programmer’s manual 40

{ add }
Style := Styles.Add;
Style.Name := 'Style3';

Deleting a style with a given name:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;
Styles := frxReport1.Styles;
{ delete }
Style := Styles.Find('Style3');
Style.Free;

After modifications are accomplished, you should call the “Apply” method:

{ use modifications }
frxReport1.Styles.Apply;

Saving/restoring a set

frxReport1.Styles.SaveToFile('c:\1.fs3');
frxReport1.Styles.LoadFromFile('c:\1.fs3');

Clear report styles

It can be performed in two ways:

frxReport1.Styles.Clear;

or

frxReport1.Styles := nil;

Styles library creation

The following example illustrates how to create a library and add two sets of
styles to it.

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;
StyleSheet := TfrxStyleSheet.Create;
{ the first set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles1';

FastReport – Programmer’s manual 41

{ here one can add styles to the Styles set}
{ the second set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles2';
{ here one can add styles to the Styles set}

Displaying a list of style sets, and application of a selected style

Style libraries are frequently used for displaying accessible style sets in such
controls as “ComboBox” or “ListBox.” After that, the set, selected by a user, is applied to
a report.

Displaying the list:

StyleSheet.GetList(ComboBox1.Items);

Usage of the selected set to a report:

frxReport1.Styles := StyleSheet.Items[ComboBox1.ItemIndex];
or
frxReport1.Styles := StyleSheet.Find[ComboBox1.Text];

Modification/adding/deleting of a styles set

Modification of a set with the specified name:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;
{ search for the required set }
Styles := StyleSheet.Find('Styles2');
{ modify a style with the Style1 name from the found set }
with Styles.Find('Style1') do
 Font.Name := 'Arial Black';

Adding a set to a library:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;
{ the third set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles3';

Deleting a set from a library:

var

FastReport – Programmer’s manual 42

 i: Integer;
 StyleSheet: TfrxStyleSheet;
{ search for the third set }
i := StyleSheet.IndexOf('Styles3');
{ if find, delete }
if i <> -1 then
 StyleSheet.Delete(i);

Saving and loading a styles library

File extension for the styles library is “FSS” by default.

var
 StyleSheet: TfrxStyleSheet;
StyleSheet.SaveToFile('c:\1.fss');
StyleSheet.LoadFromFile('c:\1.fss');

